Volume phase transitions of cholesteric liquid crystalline gels

Kyushu Institute of Technology, Akihiko Matsuyama

We present a mean field theory to describe anisotropic deformations of a cholesteric elastomer without solvent molecules and a cholesteric liquid crystalline gel immersed in isotropic solvents. Based on the neoclassical rubber theory of nematic elastomers, we derive an elastic energy of cholesteric elastomers and a twist distortion energy,[1] which are important to determine the shape of a cholesteric elastomer (or gel). We demonstrate that when the elastic energy dominates in the free energy, the cholesteric elastomer causes a spontaneous compression in the pitch axis and elongates along the director on the plane perpendicular the pitch axis. Our theory can qualitatively describe the experimental results of a cholesteric elastomer. We also predict the first-order volume phase transitions and anisotropic deformations at the cholesteric-isotropic phase transition temperature. Depending on the chirality of the gels, we find a prolate or oblate shape of cholesteric gels. Figure 1 shows the deformations κ_i plotted against the temperature T/T_{CI}.

Figure 1: Deformations κ_i ($i = x, y, z$) plotted against the temperature T/T_{CI}, where T_{CI} shows the temperature of the cholesteric-isotropic phase transition. Solid circles show the experimental results κ_x of a cholesteric elastomer.[2] As decreasing temperature we have the first-order CIT and the values of the deformations κ_i jump at $T = T_{CI}$.

References

1E-mail: matuyama@bio.kyutech.ac.jp