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We develop a new simulation method of colloidal suspensions, which we call a “fluid particle dynam-
ics” (FPD) method. This FPD method, which treats a colloid as a fluid particle, removes the difficulties
stemming from a solid-fluid boundary condition in the treatment of hydrodynamic interactions between
the particles. The importance of interparticle hydrodynamic interactions in the aggregation process of
colloidal particles is demonstrated as an example. This method can be applied to a wide range of prob-

lems in colloidal science.

PACS numbers: 82.20.Wt, 82.70.—y, 83.10.Pp, 83.20.Jp

The dynamic behavior of colloidal suspensions is quite
important from both scientific and industrial viewpoints
[1,2]. It includes many fundamental problems, e.g., rhe-
ological behavior of colloidal systems under shear fields
and the kinetics of colloidal aggregation, phase separation,
gel formation, and crystallization. If we try to attack these
problems either theoretically or numerically, the most
difficult problem arises from hydrodynamic interactions
between solid particles. The nonlocal nature of hydrody-
namic interactions is a key physical factor that makes this
problem so rich, but at the same time so difficult. It is
known that for the creeping-flow regime, truncating the
hydrodynamic interactions beyond some critical distance
causes serious errors because of the intrinsically long-
range nature of the interactions. This situation is physi-
cally very similar to the problem of interacting charged
particles, where spherical truncation of the Coulomb inter-
action between ions leads to large errors. If we explicitly
treat a solid-fluid boundary of a colloid particle, thus,
enormous calculations are required. A number of approxi-
mation methods are proposed to reduce the calculation
time with keeping the important effects of hydrodynamic
interactions [3—9]. These considerable improvements of
methods and recent advance of computers now make nu-
merical simulations powerful and popular means to study
the dynamics of suspensions. However, hydrodynamic
interactions between particles are still serious obstacles
for our understanding of the dynamics of colloidal
suspensions. Thus, one of the main goals of colloidal
science is to reveal the physical nature of long-range
interparticle hydrodynamic interactions in a dense particle
system.

There are a number of interesting problems, where inter-
particle hydrodynamic interactions may play crucial roles.
For example, colloidal phase separation, aggregation, and
gel formation have recently attracted considerable atten-
tion. Phase separation in such a system has been found
to have many unusual features including a long-lived tran-
sient gel state [10—12]. For a deep quench, for example,
the initial growth of the concentration fluctuations is fol-
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lowed by the formation of a transient gel, and the coars-
ening process apparently stops for a while. This transient
gel state lasts for a long time, and then the gel eventu-
ally collapses under gravity. Phase separation of emulsion
[13—15] also has similar features. Since these phenomena
occur in dense colloidal suspensions, hydrodynamic inter-
actions should be quite important.

Many simulation studies have so far been performed
to understand these interesting, but mysterious phe-
nomena [15-18]. 1In all these studies, the so-called
Brownian dynamics simulations are employed to save the
computation time. The hydrodynamics is free draining
there and thus hydrodynamic interactions between par-
ticles are completely ignored. However, there is a high
possibility that hydrodynamic interactions between the
particles play a crucial role in the structural formation
during aggregation or phase separation. This is indeed
the case, as demonstrated below. To our knowledge,
there are no simulations with interparticle hydrodynamic
interactions on this problem. This may be largely due to
the difficulty in dealing with many-body hydrodynamic
interactions in a dense colloidal suspension. So an effi-
cient simulation method properly handling hydrodynamic
interactions in a colloidal suspension is highly desirable.
Since the similar behavior is also observed for a suspen-
sion of rodlike colloidal particles [19], the applicability
of the method to particles with an arbitrary shape is also
desirable.

In previous simulations, colloidal suspensions were usu-
ally treated as a mixture of solid particles and a simple
liquid. This is quite natural since it reflects the reality.
However, this type of approach inevitably suffers from the
solid-fluid boundary conditions on the surface of colloidal
particles, which make simulations very complicated and
accompany the problem of the singularity associated with
the squeezed flow [6]. In this Letter, we demonstrate a new
simulation method, which is essentially different from con-
ventional ones in the point that we view colloidal suspen-
sions as a mixture of viscous undeformable fluid particles
and a nonviscous simple liquid, instead of treating colloids
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as solid particles. We call this new method a “fluid particle
dynamics” (FPD) method.

First we explain our FPD method. This method is based
on a new hybrid model, which combines a lattice simu-
lation for continuous fields and an off-lattice simulation
for particles. We use r for an on-lattice site, while r; for
an off-lattice position of particle i. A colloidal suspen-
sion is treated as a completely immiscible fluid mixture,
in which undeformable but viscous fluid particles with the
viscosity 7. are suspended in a liquid component with the
viscosity ny. In the limit of 7./n; — o, fluid particles
can be regarded as solid ones. Thus, this viscosity ratio
R (= m./mn,) is a measure of the accuracy of our approxi-
mation. A particle whose center of mass is located at r; is
represented by concentration fields

¢i(r) = [tanh{(a — |r = r;])/&} + 11/2, (D)

where a is the radius of a particle and ¢ is the interface
thickness. Then the spatial distribution of the viscosity
is given by n(r) = 7, + SV An¢;(r), where A7 is the
viscosity difference between the liquid and colloids. Note
that n. = 1y + An. The summation is taken over all
the particles (N particles) in the simulation volume. For
our simulations we use a Lennard-Jones potential of short-
range attraction, V(r), as an interparticle potential between
particles separated by the distance r, although we can in
principle use any potential shape:

o-d(7) (] e

where k is the strength of the potential and o is the
range of interaction. The force acting on particle i, whose
center of mass is located at r;, is then determined as
F; = —azj-&l-v(lr,- — rjl)/or;.  Then the continuous
force fields F(r) can be obtained as F(r) = SV F;;(r).
The equation of motion is thus given by the Navier-Stokes
equation

p%v —F - Vp + V- [gVo + Vo)}] + £, 3)

where D% = % + v -V, p is the density, and  is the
thermal force noise. Pressure p is determined to satisfy the
incompressibility condition. In our simulations we ignore
the nonlinear term pv - Vv and the force noise term ¢
just for simplicity. We also assume that the density of
colloidal particles is the same as that of a liquid, but the
density difference and the resulting effects of gravity can
be straightforwardly included in the above equation.

Initially particles are distributed in space with avoiding
the overlap with them. Using the continuous force fields
F determined by the particle distribution, we calculate the
velocity fields by solving Eq. (3) under the incompressibil-
ity condition V - v = 0: The velocity fields at t + At are
incremented by

pAv =[F — Vp + V- {n(Vv + (Vv))}]Ar, 4

where Ar is a time step (At = 0.01). Here F — Vp +
V - [9(Vv + (Vv)")] is calculated by an inverse Fourier
transformation  of Tz “[F + V- {n(Vv + (Vv))}],.
Here T, =1 — qq/q” is the operator of the trans-
verse projection in g space, whose operation guarantees
V- v =0. By calculating the center-of-mass velocity
of each particle v; as v; = [drv(r)¢;(r)/ [dr¢:(r),
we move particles by Ar; = v;Ar. This gives us a new
spatial distribution of particles. Thus we obtain new ¢
and v fields on the lattice at a time ¢ + Az. With these
fields, we solve Eq. (3) again. Then, we repeat the above
procedure. In this way, we calculate the time development
of both the spatial distribution of particles and continuous
velocity fields in a “coupled” manner.

Our new method is hinted from model H simulations
of fluid phase separation [20,21], whose hydrodynamics is
also described by the Navier-Stokes equation. Note that
since our simulation is based on the particle dynamics, co-
alescence between particles is, of course, not allowed, dif-
ferently from model H simulations. This method allows
us to avoid the discontinuity of flow fields at the interface.
Namely, it enables us to apply the Navier-Stokes equation
to our problem without suffering from solid-fluid boundary
conditions. For example, the numerical singularity associ-
ated with the squeezed flow produced by two approaching
particles is automatically avoided in our method because
of the finiteness of 7.. In the limit of n./n; — o and
large a, however, our method is expected to describe the
squeezing phenomena properly. The accuracy of our ap-
proximation for colloidal suspensions increases with the
increase in the viscosity ratio R. For emulsions, in which
fluid particles are suspended in a simple liquid, our method
should be even more realistic.

It may be worth comparing our FPD method with a few
previous simulation methods. Stokesian dynamics [3] is
one of the most powerful methods to properly incorpo-
rate the many-body hydrodynamic interactions. However,
it suffers from the heavy calculations since calculation
of the hydrodynamic interactions among N particles re-
quires O(N?) operations and thus limits the simulations to
small N systems. Further, this method is complicated in
their mathematical structures. Dissipative particle dynam-
ics (DPD) [4] also suffers from the similar problems since
it treats even the fluid component as particles. For the rea-
sonable size ratio between colloids and fluid particles, the
total number of fluid and colloid particles inevitably be-
comes quite large and thus the simulations require a long
calculation time. In contrast, our method is numerically
more efficient than these conventional methods and also
physically much simpler.

First we show how the viscosity ratio R correlates with
the solidlike nature of a fluid particle in FPD simula-
tions. Figures 1(a) and 1(b) show flow fields around and
inside a single particle moving with a constant veloc-
ity vy relative to the surrounding fluid, respectively, for
R =1 and R = 50. The system size was 64 X 64 and
the particle radius was 10. The flow fields for R = 50
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FIG. 1. Flow fields around and inside a particle simulated by
a FPD method. (a) R = 1; (b) R = 50.

are very similar to those for a solid particle. In this case,
few flow fields enter inside a particle, which guarantees
the validity of our new simulation method of colloidal
suspensions. As shown in Fig. 2, the average strength
of the residual flow fields inside a particle, {jv — wgl)?,
monotonically decrease with increasing R = 7./7,; in
other words, the accuracy of the approximation increases
with increasing R. Here (lv — wp)? is calculated by using
the relation (v — wl)?> = [drv*(r)¢(r)/ [dré(r) —
[ [drv(r)¢(r)/ [dré(r)?, where ¢ is the ¢ field of
the particle.

Next we show the results of two types of simulations, (i)
FPD and (ii) Brownian-dynamics-like simulations, to com-
pare the aggregation processes of colloidal suspensions
with and without hydrodynamic interactions. (i) Two-
dimensional FPD simulations are performed for a system
with the size of 128 X 128. The mesh size was taken to
be &, which was set to 1. The particle radius a was 3.5 in
this unit [22] and the number of particles N was 100. Thus
the volume (area) fraction ¢ was 0.235. We set o to the
diameter of a particle (2a = 7) and k to 1 [see Eq. (2)].
We also set 775 to 0.5 and p to 1. Ar was set to 0.01 to en-
sure the numerical stability. Periodic boundary conditions
are imposed at the boundaries of the simulation volume.
The results are shown in Fig. 3. (ii) Simulations without
hydrodynamic interactions between particles are also per-
formed for comparison. We solved the following equation
of motion:

10°
- __
~e._
SANS U T
s “e.
] S
= 107} .
\" .
‘e
3 . ~
101 10 100
R

FIG. 2. Dependence of (v — vol)? (see text) upon the viscos-
ity ratio R. The dashed curve is a guide for the eye.
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FIG. 3. A phase-separation process of colloidal suspensions
simulated by the FPD method with R = 50.

P%Ui=Fi—fvi- )
Here f is the friction constant and set as f = 10%/3. All
the other parameters were set to the same as those of the
above-described FPD simulation. The results are shown in
Fig. 4. Note that in this simulation the hydrodynamics is
free draining. This simulation is essentially the same as the
so-called Brownian dynamics simulation except that we do
not have a random force noise term in our simulations. We
neglect the noise terms in both FPD and this simulation to
pick up solely the effects of interparticle hydrodynamic
interactions on the behavior of particle aggregation.

In Fig. 3, homogeneously distributed colloidal particles
gradually form clusters with open structures after the
initiation of phase separation. Effects of hydrodynamic
interactions can be recognized evidently by compar-
ing these results with those of the above-described
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FIG. 4. A phase-separation process of colloidal suspensions
simulated by the Brownian-dynamics-like method. The initial
configuration of particles is the same as that of Fig. 3.
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Brownian-dynamics-like simulation, which are shown in
Fig. 4. Both simulations are started from the same initial
particle configuration and there are no force noises. Thus,
all the differences should stem solely from hydrodynamic
interactions between the particles. Without hydrodynamic
interactions, particles have a tendency to aggregate into
a much more compact structure, as often reported in
Brownian dynamics simulations [15-18]. Now it can
be concluded that the formation of clusters with “open”
structures is due to interparticle hydrodynamic inter-
actions. This clearly demonstrates that hydrodynamic
interactions crucially affect the pattern evolution and ki-
netics of aggregation, gel formation, and phase separation
in colloidal suspensions.

Here we consider the roles of hydrodynamic interactions
in the formation of chainlike open structures. To reveal
physical mechanisms, let us consider the motion of a pair
of particle pairs, as an example. Without hydrodynamic
interactions, they approach with each other mainly by the
translational motion and the rotational motion is only very
weakly induced before their contact. There are also no ef-
fects of squeezed flows in this case. With hydrodynamic
interactions, on the other hand, there are two mechanisms,
which try to align the pair of paired particles in the same di-
rection during their approach. One is the rotation of a par-
ticle pair toward the direction of the translational motion.
This is induced by its anisotropic shape to minimize the
viscous dissipation and can be explained by a simple sym-
metry argument. The other is due to hydrodynamic interac-
tions between the particle pairs: The flow fields induced
by the motion of a particle pair rotate the other particle
pair. These mechanisms significantly increase the proba-
bility of the formation of a chainlike open structure. The
hydrodynamic interactions (more specifically, squeezed-
flow effects) also make the approaching speeds of particles
considerably slower compared to the case without hydro-
dynamic interactions, which also helps the formation of
chainlike structures. Our results strongly indicate that the
hydrodynamic interactions between particles are quite im-
portant to understand the formation of a transient gel of
colloidal particles. For example, the threshold composition
required for the formation of a “transient” gel can be esti-
mated by neither a static percolation model nor a diffusion-
limited aggregation model and we must properly include
hydrodynamic effects for such an estimation. The thresh-
old volume fraction for the formation of a transient gel
should be much lower for a system with hydrodynamic
interactions than for that without. This point will be dis-
cussed in detail elsewhere, focusing on the unique features
of phase separation behavior in colloidal suspensions [23].

In summary, we develop a new method (FPD) of colloid
simulations and demonstrate its validity. The importance
of interparticle hydrodynamic interactions in aggregation,
gel formation, and phase separation of colloidal suspen-
sions is clearly demonstrated. Our FPD method may be
a powerful tool in colloid simulations; for example, it can
be applied to the studies of gravity-induced collapsing of

a transient gel and shear effects on colloidal suspensions.
It is worth stressing that this method can be applied to
colloidal particles of any shape without any fundamental
difficulty by properly describing a shape function for the
viscosity profile [see Eq. (1)] and orientation-dependent
interparticle potentials.

The author (H. T.) is grateful to J. R. Melrose for fruitful
discussions on various aspects of numerical simulations of
colloidal systems.
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