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Recently, the role of hydrodynamic interactions in the selection of a kinetic pathway for phase

transitions has attracted considerable attention. Here we study this problem numerically by taking as

an example a coil-globule transition of a single polymer, which is a prototype model of protein folding.

When a swollen polymer collapses into a globule state, hydrodynamic interactions accelerate the

transition. We find, on the other hand, that when a rather compact polymer collapses into the same final

state, hydrodynamic interactions decelerate the transition due to a slow squeezing process of the solvent.

We reveal that the degree of the initial enhancement of anisotropy of the polymer configuration determines

whether hydrodynamic interactions accelerate or decelerate the collapsing dynamics. We also discuss the

possible relevance of squeezing flow effects in protein folding.
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Hydrodynamic interactions (HIs) often change the ki-
netic pathway of ordering of soft matter. The most well-
known example is phase separation of a binary liquid
mixture. Unlike phase separation of a solid mixture, hydro-
dynamic transport of material makes a new coarsening
mechanism active: Siggia’s hydrodynamic pumping
mechanism for bicontinuous phase separation [1]. The
mechanism even leads to a domain coarsening law differ-
ent from those for solids. In this case, we may say that the
momentum conservation selects the kinetic pathway. It was
also shown that phase separation of polymer solutions,
protein solutions, and colloidal suspensions are strongly
influenced by the momentum conservation law including
viscoelastic effects [2].

In this way, any transitions occurring in a liquid may be
strongly affected by HIs. For polymer dynamics, the dif-
ference between the Rouse and the Zimm model is known
to arise from HIs [3]. Here we consider a coil-globule
transition (CGT) of a polymer chain immersed in a liquid
[4]. When the solvent quality is changed from ‘‘good’’ to
‘‘poor,’’ e.g., by a temperature (T) decrease, a polymer
chain collapses from a swollen to a compact globule state.
The thermodynamic nature of CGT has been rather well
understood [5]. Because of experimental difficulties, the
effects of HIs on CGT has been discussed mainly theoreti-
cally [6,7], and by numerical simulations [8–12]. Despite
these studies, the dynamics remains elusive due to the
complex nature of HIs. Since the CGT is regarded as a
prototype model of protein folding [13], this problem also
has a biological significance with regards to understanding
dynamic roles of a solvent (water) in the selection of the
kinetic pathway of protein folding.

Following the pioneering works [6,8], this problem of
hydrodynamic effects has recently been revisited by using
state-of-the-art numerical simulations [9–12]. For ex-
ample, Kikuchi et al. reported that HIs accelerate the
CGT of a flexible polymer and also affect the morphology
in the shrinking process [11]. Chang and Yethiraj also

proposed that HIs tend to prevent a collapsing polymer
from being trapped at local energy minima [10]. These
studies clearly showed acceleration effects of HIs.
Recently, Tanaka speculated that HIs not only accelerate

the CGT, but also may retard it via a squeezing flow effect
[14]. Note that HIs slow the dynamics of colloidal aggre-
gation for certain configurations of particles since when
particles of a finite volume are approaching each other the
solvent between them has to be squeezed out [15]. In this
Letter, we systematically study the dynamics and kinetic
pathway of the CGT by comparing numerical simulations
with and without hydrodynamics.
Treating polymers and a solvent on a microscopic level,

e.g., by molecular dynamics simulations, is quite expensive
computationally, and thus it is difficult to simulate the
process of the CGT that typically occurs in a time scale
of 1 ms. The long-range nature of hydrodynamics makes
the situation worse. Thus, a proper coarse graining is
necessary. Various numerical methods have been proposed
and employed [8–12,16–18]. Here we explain our coarse-
graining strategy. We express a polymer by a bead-spring
model [3]. The novelty of our method comes from the
usage of an undeformable spherical fluid particle as a
bead. This method, which we call the fluid particle dynam-
ics (FPD) method [15,19], was originally developed to
study colloidal particles interacting via HIs without suffer-
ing from the solid-fluid boundary condition. It is a hybrid
simulation method: the flow field is solved on a cubic
lattice and the particle position is treated off lattice. In
our polymer problem, a particle represents a blob. We
describe particle i on the lattice as �ið ~rÞ ¼ ½tanhða� j~r�
~rijÞ=�þ 1�=2, where ~r is a lattice coordinate. ~ri, a, and �
are the position vector of the center of mass, the particle
radius, and the interfacial width, respectively. We intro-
duce a Lennard-Jones (LJ) potential between particles
VLJðrÞ ¼ 4�fð2a=rÞ12 � ð2a=rÞ6g, where � is the strength
of the potential. A particle also interacts with the others via
a harmonic potential: VspðrÞ¼ 1

2�
PN�1

i¼1 ðj ~riþ1� ~rij�2aÞ2,
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where N is the number of particles and � is the entropic
spring constant. We set � to be large enough for the spring
length to be almost preserved around the particle diameter
(2a) [20]. Thus, the polymer chain does not cross itself: it
is ‘‘not’’ a phantom chain. The force acting on particle i is

thus given by ~Fi ¼ �ð@=@~riÞ
P

N
j�ifVLJðrijÞ þ VspðrijÞg

(here rij ¼ j~rj � ~rij), which is mapped on the lattice as
~Fð ~rÞ ¼ P

N
i

~Fi�ið~rÞ=
R
d~r�ið ~rÞ.

The gyration radius Rg of the polymer depends upon �

[see the inset of Fig. 4(b)]. We scaled the energy (e.g., �) by
kBT (kB is Boltzmann’s constant). Rg is calculated as R

2
g ¼

ð1=NÞPN
i¼1 j~ri � ~rcj2, where ~rc is the position vector of the

center of mass of the polymer chain. Rg becomes equal to

Rg of the ideal chain, R
�
g ¼ a

ffiffiffiffiffiffiffiffiffi
N=6

p
, at � point [3,4]. In this

study, we quench the system from various initial states

(Rg ¼ Ri
g) to the common final state � ¼ 4:76 (Rg ¼

Rf
g). Even in this collapsed state, Rf

g=R�
g � 0:61. This

means that the polymer density in a particle is rather low
even in the final collapsed state, which allows us to assume
that the viscosity is homogeneous in space: �ð ~rÞ ¼ �. This
assumption of homogeneous viscosity and the absence of
inertia effects extremely simplify our problem. Under the
incompressible condition, the flow field ~vð ~rÞ is calculated
from the Navier-Stokes equation, ~Fð~rÞ � ~rpþ �r2 ~vþ
~r � �$ ¼ 0, as ~vð~rÞ ¼ R

T
$ð ~r� ~r0Þ � f ~Fð ~r0Þ þ r � �$ð ~r0Þgd~r0,

where T
$ð~rÞ ¼ f I$ þ ~r ~r =r2g=ð8��rÞ is the Oseen ten-

sor. Here �
$

represents thermal stress fluctuations
satisfying the following fluctuation-dissipation theo-
rem: h�	
ð~r; tÞ���ð ~r0; t0Þi ¼ 2�ð�	��
� þ �
��	� �
2
3�	
���Þ�ð~r� ~r0Þ�ðt� t0Þ. Then, the position of the ith

particle is updated by the averaged velocity inside the
particle as d~ri=dt ¼

R
d~r ~vð~rÞ�ið~rÞ=

R
d~r�ið ~rÞ.

The space is discretized onto a lattice by using � as a unit
and the time is scaled by t0 ¼ ��3=�. We set N ¼ 50,
a=� ¼ 3, and �a2=� ¼ 31:25. We employ periodic bound-
ary conditions on a cubic lattice (643) and a time increment
�t ¼ 0:01. A typical unit time is t0 � 10 ns for a ¼
10 nm, � ¼ 10�3 Pa, and T ¼ 300 K. Typically we ana-
lyzed the processes of seven runs starting from exactly the
same initial configuration, but with different noises, and
took the average to reduce the statistical errors.

In order to elucidate roles of ‘‘many-body’’ HIs in CGT,
we also perform Brownian dynamics (BD) simulations,
where hydrodynamics is free draining and thus incorporate
only ‘‘single-body’’ HIs. The roles of the solvent in BD are
only to give thermal fluctuations and the ‘‘local’’ friction
between a particle and the solvent. We solve the following
Langevin equation for the overdamped limit (no inertia

effects): 
d~r=dt ¼ ~Fi þ ~�i, where 
 is the friction con-

stant and ~�i is the thermal noise satisfying h�	
i ðtÞ�


j ðt0Þi ¼
2
�ij�	
�ðt� t0Þ. We set 
 such that the viscous friction

of a single particle becomes the same between BD and
FPD. We confirmed that the resulting particle diffusivities

of the two methods estimated from free diffusion coincide
with each other within 5%.
First, we show results for a quench from a good (G) to a

poor (P) solvent, i.e., for Ri
g=R

�
g ¼ 1:66 [Fig. 1(a)]. We can

see that HIs accelerate the collapsing process, as previ-
ously reported [11]. Typical snapshots of the configura-
tions are also drawn in the inset. For BD polymer, clusters
are formed around both ends of the polymer and grow with
time by absorbing the slack polymer between them [21].
For FPD polymer, on the other hand, the polymer forms a
sausagelike elongated structure [6], which then thickens
and shortens with time and eventually collapses into a
globule state. To see this difference more clearly, we
characterize the shape of a polymer as follows: We average
a polymer structure over �t ¼ 10 to remove the influence
of thermal fluctuations, replace a bead by a Gaussian field
[c ð ~rÞ ¼ exp½ðj~ri � ~rj=10Þ2�], extract the shape of the
polymer by setting the interface at c ð ~rÞ ¼ 2:0, and calcu-
late the Gaussian curvature K of the interface. Figure 2(a)
shows that the FPD polymer transiently has a sausagelike
shape, which is composed of the cylindrical part (K ¼ 0)
and the end caps (K > 0). On the other hand, the BD
polymer has a saddle-shaped (K < 0) part, reflecting the
cluster formation at both ends. For a longer chain (N ¼
80), we observe the similar tendency. However, the degree
of hydrodynamic delocalization of the clusters formed at
the chain ends becomes weaker (less sausagelike) for a
chain of larger N.
Figure 1(c) shows results for a quench from a slightly

poor (SP) to poor (P) solvent, i.e., for Ri
g=R

�
g ¼ 0:81. There

is little difference in the morphological change between
BD and FPD. For both cases, the polymer shrinks with time
while keeping a rather spherical configuration. Interest-
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FIG. 1 (color online). Temporal change of Rg=R
�
g for a G-to-

P (a) and a SP-to-P quench (c). Insets depict the CGT processes.
Flow fields around the FPD polymer are shown in (b) and (d) for
quenches (a) and (c), respectively. The darker (red) the arrow
color, the stronger the flow.
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ingly, HIs decelerate the collapsing process in this case.
Figure 1(d) shows that there is flow of the solvent squeezed
out from the inside of the polymer along the radial direc-
tions. We claim that the nonlocal viscous friction is the
origin of deceleration of the CGT.

It is well known that HIs drastically accelerate polymer
dynamics: Rouse versus Zimm model [3,16]. As shown in
Fig. 2(b), the normal-mode analysis shows that �p¼1 at

equilibrium is shorter by a factor of �5 and 3–4 for FPD
than for BD, respectively, for the two initial states, G and
SP in Fig. 1. The mode number (p) dependence of �p is

consistent with the theories for a swollen polymer, but not
for a compact polymer where the theories lose their valid-
ity due to the presence of intersegment attractive interac-
tions and a finite segment volume. The acceleration due to
HIs for the collapsing from the swollen G state is nearly a
factor of 4 [Fig. 1(a)], which is about the same as the above
ratio of �p¼1 for the same initial configuration. Even for

this case, however, there is a difference in the kinetic path-
way between FPD and BD chains, as shown in Fig. 2(a).
The difference is much more significant for the collapsing
from the compact SP state, which is decelerated by HIs
(squeezing effects). This effect is even opposite from that
in �p¼1. Thus, we may say that the difference in the CGT

kinetics between FPD and BD polymers (particularly, from
SP to P) is due to the change of a transition path under the
influence of intersegment attractive interactions, which
tends to trap a polymer in metastable configurations, and
not simply due to hydrodynamic renormalization of poly-
mer dynamics.

Figure 3 plots the total potential energy per particle
against Rg of the collapsing polymer. For Ri

g=R
�
g ¼ 1:66

[Fig. 3(a)], the potential energy of the polymer with the
same Rg is always higher for FPD than for BD. This

indicates that with HIs, the polymer can collapse more
smoothly while avoiding direct contacts and the resulting
trapping in local energy minima. On the other hand, the

potential energy is only slightly higher for FPD than for
BD for Ri

g=R
�
g ¼ 0:81 [Fig. 3(b)]. This reflects the fact that

the configuration of the collapsing polymer is similar
between them [see the inset of Fig. 1(c)] but direct contacts
are less for FPD due to HIs.
Each curve in the case of Ri

g=R
�
g ¼ 1:66 has clear kinks

[see Fig. 3(a)], suggesting that the CGT has more than two
modes. Figure 3(c) shows the temporal change in the
scaled total potential energy for several quenches for
FPD. For larger Ri

g, it takes a longer time to reach the final

globule state. The temporal change in the scaled potential
energy can be fitted by a sum of two exponential decays:
~VFPDðtÞ ¼ Ae�t=�sp þ ð1� AÞe�t=�g . In the early stage,
each spring shrinks due to interparticle attractions. �sp
represents the fast mode stemming from this rather rapid
local process. Thus, the configurational relaxation associ-
ated with the CGT can be described by the slow relaxation
mode for all cases. Interestingly, the sausagelike state
smoothly changes to its shrunken state even for Ri

g=R
�
g >

1 [see Fig. 1(a)]; in other words, it is just a transient state of
one smooth shrinking process into the final globule state
(�g mode).

Figure 3(d) shows the temporal change in the scaled
total potential energy during CGTs for BD. In contrast to

FPD, the curves are fitted by ~VBDðtÞ ¼ Ae�t=�sp þ
Be�ðt=�cÞ
 þ ð1� A� BÞe�t=�s for Ri

g � R�
g and ~VBDðtÞ ¼

Ae�t=�sp þ Be�ðt=�cÞ
 for Ri
g < R�

g. Note that both functions

contain a stretched exponential decay mode. For Ri
g � R�

g,

besides the fast spring shrinking process, the CGTof BD is
described by two-step decay, as shown in Fig. 1(a): the
formation of clusters around both ends of the chain and
their growth while absorbing the slack polymer between
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�
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in (a)–(d) were averaged over seven runs.
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them. �c and �s represent the time scales of the former
(fast) and the latter (slow) process, respectively. For Ri

g <

R�
g, on the other hand, only one globular state is formed

since most of the particles are already close to each other.
Accordingly, the slow collapsing mode (�s mode) is not
observed for BD, as can also be seen in Fig. 1(c). The
stretching exponent 
 for each process scatters by �0:2
even for simulation runs starting from the same configura-
tion. This suggests that the scatter of 
 reflects the statis-
tical fluctuations of the structure of a local cluster formed
in the shrinking process, which is one of many local energy
minimum configurations. The cluster formation is a con-
sequence of random trapping, which makes the escape
process stochastic and results in the scatter of 
.

Figure 4(a) summarizes the dependence of �g, �c, and �s
on Ri

g. For both FPD and BD, the slow modes become

slower with increasing Ri
g. When Ri

g > R�
g, however, �c

characterizing the cluster formation process is almost in-
dependent of Ri

g, reflecting the local nature of cluster

formation. Thus, we can say that only the modes associated
with the global configurational change of a polymer de-
pend upon Ri

g. The fact that �s > �g when Ri
g � R�

g and

�g > �c when Ri
g < R�

g [Fig. 4(a)] indicates that a cross-

over in the global shrinking dynamics between BD and
FPD polymers occurs around Ri

g=R
�
g ffi 1. To see this more

clearly, we introduced a parameter characterizing the dy-

namics as A ¼ R
�
0 ðRgðtÞ � Rf

gÞdt, where � is the time

when the system reaches the final collapsed state. This
parameter is quite robust against fluctuations of Rg.

Figure 4(b) plots the ratio of A for FPD and BD,
AFPD=ABD, as a function of Ri

g=R
�
g. We can see a distinct

crossover of the dynamics between FPD and BD around
Ri
g=R

�
g ¼ 1, where AFPD ffi ABD.

To summarize, we found that HIs accelerate collapsing
for a quench from above � point, whereas they decelerate
collapsing for a quench from below � point. We believe
that the roles of HIs in the chain collapsing transition
crucially depend upon the initial enhancement of anisot-
ropy of a polymer configuration. In a swollen state, an

instantaneous configuration of a polymer is elliptic [3,4],
i.e., anisotropic. This anisotropy is further enhanced by the
shrinking process. The resulting directional momentum
flow leads to smooth one-step collapsing without being
trapped in local minima. When the initial temperature is
below � point, the initial polymer configuration is nearly
spherical. Thus, the flow produced by shrinking of a poly-
mer has a radial (spherical) symmetry. This hydrodynamic
squeezing effects, which are intrinsically of many-body
nature, cause extra friction against polymer shrinking,
and thus slow down the collapsing transition.
Finally, we mention that the deceleration of the collaps-

ing due to HIs, or the avoidance of direct contacts between
particles, may play a crucial role in preventing a protein
from being trapped in local energy minima and the result-
ing successful protein folding from a molten to the native
state. The hydrodynamic squeezing effect may give extra
time for the protein to search for its global minimum
configuration while avoiding direct contacts between seg-
ments. Momentum conservation may open up a new ki-
netic pathway to the collapsing transition of polymers, and
also to the folding of proteins.
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