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ABSTRACT: We have studied the characteristic features of viscoelastic phase separation in three
dimensions by using numerical simulations, focusing on the morphological development. The Langevin-
type equations of a two-fluid model, which includes both bulk and shear viscoelastic stresses, are solved
numerically. The origin of phase inversion is discussed on the basis of a simple consideration on the
symmetry of the “effective” phase diagram, and the importance of the bulk stress on this phenomenon is
addressed. The roles of bulk and shear stresses are clarified by comparing simulation results for cases
with and without each stress. We analyzed the temporal change in the structure factor and found that
the structure factors cannot be scaled, and thus, the dynamical scaling law does not hold at all for
viscoelastic phase separation. We also studied the geometrical characteristics such as the mean and
Gaussian curvatures and the Euler characteristic of the interface, to characterize the topological features
of viscoelastic phase separation. The results also unambiguously indicated the absence of the self-
similarity, which is the central concept of the late-stage pattern evolution in conventional phase separation.
The topological change accompanied by phase inversion was successfully characterized by the curvature
of domain interface and the Euler charactristic. Our study indicated the advantage of the real-space
analysis over the q (wavenumber)-space one in the topological characterization.

I. Introduction

Phase-separation phenomena are widely observed in
various kinds of binary mixtures including metals,
semiconductors, simple liquids, and complex fluids such
as polymers, surfactants, colloids, and biological materi-
als.1 Phase separation in polymer solutions and polymer
mixtures are thought to be the same as that in classical
fluid mixtures (model H in the Hohenberg-Halperin
notation2).1,3 This is true when the difference in vis-
coelastic properties between two coexisting phases is
small, e.g., near a critical point, for a mixture of
polymers having similar molecular weights and glass-
transition temperatures or for a solution of polymer with
low molecular weight. In contrast to this common belief,
one of us recently found a new type of phase-separation
behavior in polymer solutions. It is named “viscoelastic
phase separation”4-6 since viscoelastic effects play a
crucial role in pattern evolution. It was demonstrated
that this unusual phenomenon is caused by strong
“dynamic asymmetry” between the two components of
a mixture. Actually, viscoelastic phase separation is also
observed in polymer blends, one of whose components
is close to its glass transition temperature.7 This
indicates that dynamic asymmetry is the only require-
ment for viscoelastic phase separation and suggests the
universal nature of viscoelastic phase separation. For
example, it is expected that viscoelastic phase separa-
tion will also be observed in colloidal suspensions and
emulsions.8,9

Viscoelastic phase separation is characterized by
unusual phase-separation behaviors.9 They include the
moving droplet phase, which coarsens unusually slowly,
and the phase-inversion phenomena in the late-stage
of phase separation.6 Such behaviors are never observed
in conventional phase separation. In particular, net-
worklike phase separation is interesting since a minor-
ity phase can transiently form a continuous phase there.
This phenomenon has a technological importance, since

it enables us to intentionally form the continuous
network structure of a minority phase. It proceeds as
follows: (i) Just after a temperature quench, a transient
gel is formed. (ii) The solvent-rich phase, which is
thermodynamically a majority phase, is selectively
nucleated after some incubation period. (ii) The polymer-
rich phase shrinks as chemical gel shrinks. (iii) In this
process, the networklike structure of the polymer-rich
phase is transiently formed. (iv) In the final stage, the
network structure relaxes to circular isolated domains.
In this way, phase inversion takes place in this phase
separation. It is obvious that there is no self-similarity
and no dynamic scaling for the pattern evolution of
viscoelastic phase separation.

It was demonstrated9,10 that viscoelastic phase sepa-
ration is well described by a two-fluid model11-15 by
including the bulk stress. The bulk stress was intro-
duced into the rheological constitutive equation9,10 to
express the formation of a transient gel right after the
initiation of phase separation. It was also shown9,10 that
the viscoelastic model is a quite universal model of
phase separation in isotropic systems, which contains
a fluid model (model H) and a solid model(model B) as
a special case. The initial stage of viscoelastic phase
separation was theoretically studied by Onuki and
Taniguchi16 and by Kumaran and Frederickson.17 To
study the late stage of phase separation, however, we
need to perform numerical simulations. Sappelt and
Jäckle18 and Ahluwalia19 made the coarse-grained
simulations, which are based on a “solid model” (model
B). These models assume the asymmetry of the diffusion
coefficient to suppress the concentration fluctuations in
polymer-rich phase selectively. The results reproduced
the selective nucleation of the solvent-rich phase and
the phase inversion in the late stage. However, this
method neglects the fluid nature of a mixture, or
viscoelastic effects. Thus, viscoelastic stresses play no
roles in this type of model.9 Taniguchi and Onuki20 and
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we21 simulated viscoelastic phase separation based on
a “two-fluid” model, in which the coupling between
concentration diffusion and viscoelastic stress are con-
sidered.15,22,23 In these studies, it was shown that
viscoelastic stresses play important roles in the forma-
tion of the networklike structure. It should be noted that
the similar simulations were made also by Sagui et al.24

and Okuzono.25 Bhattacharya et al. and Liu et al.26

made molecular dynamics simulations, which take into
account the connectivity of polymer chains. The results
indicated the importance of the entanglements of poly-
mers in the formation and the breakup of the network-
like structure on a mesoscopic level.

In our previous numerical simulations,21 we newly
introduced the bulk stress into a two-fluid model, which
is known to be important in the volume shrinking of
gels,27 in addition to the shear stress. Our results
reproduced all the essential features of viscoelastic
phase separation observed experimentally. This indi-
cates the importance of bulk stress, which is directly
coupled to the concentration field and suppresses the
concentration fluctuations in the polymer-rich phase
selectively. The roles of bulk and shear stresses in
pattern evolution were revealed. We stress that the bulk
stress is caused by the formation of a transient gel,
which is due to the asymmetry in elementary dynamics
between the two components of a mixture.9,10,28,29

Most previous simulations have so far been limited
to two dimensions. To gain an insight into the topologi-
cal characteristics of patterns, we need to perform three-
dimensional simulations. In this paper, thus, we nu-
merically simulate viscoelastic phase separation in three
dimensions to answer the following questions: (i) How
is the networklike structure characterized in 3D? (ii)
How can phase inversion be described in terms of
topological characteristics? (iii) Do the roles of the shear
and bulk stresses depend on the dimensionality or not?

In section II, we review the viscoelastic model based
on a two-fluid model. In section III, we explain the
details of numerical simulations. In section IV, we
discuss the mechanism of the phase inversion. In section
V, we show the results and discuss them. Finally we
summarize our work.

II. Viscoelastic Model: Two-fluid Model
Here we describe the Langevin-type equations of

viscoelastic phase separation of polymer solutions used
in this study. They are based on a “two-fluid” model of
a mixture of polymer p and solvent s.15,21 Let vbp and vbs
be the average velocities of polymer and solvent, re-
spectively, and φ(rb,t) be the concentration of polymer
at a point rb and time t. We employ the Flory-Huggins-
type mixing free energy functional given by

Here kB is Boltzmann’s constant, T is the temperature,
Np is the degree of polymerization, and ø is the Flory-
Huggins interaction parameter. In this study, however,
we set Np ) 1 and neglect the φ dependence of the
coefficient of the gradient term C in order to pick up
the pure effects of viscoelastic stresses on the phase-
separation kinetics.

The kinetic equations are given by

where θ represents the coarse-grained thermal concen-
tration fluctuations, ú is a friction constant between
polymer and solvent, and ηs is the viscosity of a solvent.
Here vb is the averaged velocity field of the solution and
is given by vb ) φvbp + (1 - φ)vbs. p̃ is a part of the
pressure, which is determined to satisfy the following
incompressible condition:

For simplicity, we assume that both polymer and solvent
have the same density F0. Π is a thermodynamical
osmotic stress tensor and is related to the mixing free
energy Fmix as

The temporal change of φ and vbp are slow in our
system so that the inertia term in eq 5 can be neglected.
Thus, we assume

Under the incompressible (eq 6) and quasi-stationary
(eq 8) conditions, eq 5 reduces to

Here T(rb) is the Oseen tensor given by

Thus, vbp is obtained from eqs 4 and 9 as

σ is the viscoelastic stress tensor, which should be
supported solely by polymers and not by solvent mol-
ecules. Thus, the associated deformation can be ex-
pressed only by vbp. Although only the shear part of
viscoelastic stress was considered in the original two-
fluid model15 for polymer solutions, we newly introduced
the bulk stress in addition to the shear one9,10,28 and
demonstrated21 that the bulk part of viscoelastic stress
plays an important role in the phase-separation process
as in the case of the volume phase transition of gels.
Thus, the total stress is given by

Here the suffixes B and S mean the bulk and shear
stresses, respectively. Note that the bulk stress σB stems
from the motion of polymers itself. Thus, it intrinsically
has the mechanical origin. In other words, σB cannot

∂φ

∂t
) -∇B ‚ (φvbp) + θ (3)

vbp - vbs ) -1 - φ

ú
[∇B ‚ Π - ∇B ‚ σ] (4)

ú0
∂vb
∂t

= - ∇B ‚ Π + ∇B ‚ σ - ∇Bp̃ + ηs∇2vb (5)

∇B ‚ vb ) 0 (6)

∇B ‚ Π ) φ∇BδFmix

δφ
) φ∇B(∂fFH

∂φ
- C∇2

φ) (7)

ú0
∂vb
∂t

≈ 0 (8)

vb(rb) ) ∫drb′T(rb - rb′) ‚ {∇B ‚ (-Π(rb′) + σ(rb′))} (9)

T(rb) ) 1
8πηsr[I + rbrb

r2 ]

vbp(rb) )
(1 - φ(rb))2

ú
∇B ‚ {-Π(rb′) + σ(rb′)} +

∫ drb′T(rb - rb′) ‚ ∇B ‚ {-Π(rb′) + σ(rb′)} (10)

σ ) σB + σS (11)

Fmix{φ,T} ) ∫drb{fFH(φ,T) + C|∇Bφ|2/2} (1)

fFH(φ,T) ) kBT{(1/Np)φ ln φ + (1 - φ) ln(1 - φ) +
ø(T)φ(1 - φ)} (2)
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be included in Π. For simplicity, we assume that
viscoelastic relaxation of each stress is single relax-
ational (or Debye-type). For such a case, it is known that
the shear stress obeys the following upper-convective
Maxwell equation

where

τS and GS are a relaxation time and a modulus of the
shear stress, respectively. Note that (∇Bvp)ij ) ∂ivpj. Since
the shear stress is a traceless tensor, we calculate the
final form of shear stress as σS

f ) σS - (1/d)TrσSI,
where I is a unit tensor and d is the space dimensional-
ity. Hereafter, the shear stress σS means this final form
σS

f . Since the bulk stress is isotropic, on the other hand,
it can be expressed by a scalar variable, namely, TrσB.
Thus, the bulk stress obeys the following equations:

Here, τB and GB are a relaxation time and a modulus of
the bulk stress, respectively. Note that σ̃ ) (1/d)TrσB.

For the shear mode, some theories, such as the
reptation model30 and the scaling relation,31 predict the
behaviors of τS and GS. They are known to depend on
the concentration field φ in good and/or Θ solvents as
follows:32

However, the values of γ and R in a poor solvent
condition, where phase separation occurs, are not avail-
able. In our study, thus, we assume that γ ) 2 and R )
2 for simplicity.

It is quite difficult to make any theoretical prediction
on the bulk stress. From both experimental observation
and physical consideration, however, we argue that a
polymer solution transiently behaves as a gel just after
the temperature quench and the destruction of this
transient gel is the process of the selective nucleation
of a solvent-rich phase.9 Thus, we express the formation
and relaxation of a transient gel by using the following
form for the bulk stress

where Θ is a step function. The physical relevance of
the above form of the bulk stress was discussed in refs
8-10.

III. Numerical Simulations
The basic equations described in section II are nu-

merically solved by discretizing time and space in three

dimensions using the periodic boundary condition. A
simulated space size is 64 × 64 × 64. To calculate eq 3,
we employ the explicit Euler method and set a grid size
to ∆x ) 1 and a time increment to ∆t ) 0.01. We solve
eq 9 using a fast Fourier transformation method.33 To
reduce the computational cost, we solve the time
development equations except for eq 9 without updating
velocity field by skipping Nskip cycles. In this study, we
set Nskip ) 10. We confirm the absence of any meaning-
ful differences between the simulations with Nskip ) 10
and those with Nskip ) 1.

Stress tensors of shear (eq 12) and bulk (eq 13) modes
are calculated by using the following relations:21

This method coincides with the usual Euler method up
to the order ∆t, and has a significant advantage over it
on the following point. This method is free from numer-
ical instabilities even for ∆t g τB and/or τS. In other
words, it allows us to treat a very wide range of the
stress relaxation time without suffering from the insta-
bility problems.

In this study, we set the parameters as kBT ) 1.3, ø
) 2.7, C ) 1, ú ) 0.1, and ηs ) 0.1. This set of
parameters was chosen so that the coarsening behavior
without viscoelastic stresses should coincide with that
of the fully scaled time-dependent Ginzburg-Landau
equation with hydrodynamic interactions (model H).34

We introduce the Gaussian random noises of φ with the
intensity δφ ) 0.1 around the averaged polymer con-
centration φ0 ) 0.3 at t ) 0 under the constraint of 0 <
φ < 1. For these parameters, the equilibrium concentra-
tions φe are nearly 0.107 and 0.893, and the final volume
fraction of polymer-rich phase is about 24.5%. It should
be noted that for this volume fraction a droplet structure
should be observed in usual fluid phase separation (see
the following case b). We study cases of phase separation
with both bulk and shear stresses (a), without any stress
(b), with only shear stress (c), with only bulk stress (d),
and with both stresses but with a longer shear relax-
ation time (e). The parameters we used are listed in
Table 1. We also performed other simulations (f and g),
in which we used the step-function form also for the
shear modulus (eq 17) instead of the analytical form (eq
15), to study how the shear stress affects the pattern
evolution in the early stage of phase separation. The
parameter used and the roles of stresses are sum-
marized in Table 1.

IV. Effective Phase Diagram and Roles of Bulk
Stress

It is known that the external shear flow affects the
position of the spinodal line of a polymer solution.12-15

There are intensive studies on the shear-induced phase
separation in polymer systems. In this problem, the bulk
stress does not play any important role, since it is not
coupled with shear flow. The concept of the bulk stress
is newly introduced to express the unique mechanical
properties of a transient gel.10,28 So it is meaningful to

σS(rb,t + ∆t) ) σS(rb,t) exp(-∆t
τS

) + [-vbp ‚ ∇BσS +

σS ‚ ∇Bvp + (∇Bvp)
T ‚ σS + GS{∇Bvp + (∇Bvp)

T}]∆t (19)

σ̃(rb,t + ∆t) ) σ̃(rb,t) exp(-∆t
τB

) + [-vbp ‚ ∇Bσ +

GB∇B ‚ vbp]∆t (20)

D
Dt

σS ) σS ‚ ∇Bvp + (∇Bvp)
T ‚ σS - 1

τS(φ)
σS +

GS(φ){∇Bvp + (∇Bvp)
T} (12)

D
Dt

) ∂

∂t
+ vbp ‚ ∇B

D
Dt

σ̃ ) - 1
τB(φ)

σ̃ + GB(φ)∇B ‚ vbp (13)

σB ) σ̃I (14)

GS ∝ φ
γ (15)

τS ∝ φ
R (16)

GB ∝ Θ(φ - φ0) (17)

τB ∝ φ
2 (18)
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reveal the roles of shear and bulk stresses in the early-
stage phase separation. Here we reconsider the concept
of the “effective” phase diagram and dynamic symmetry
line6 on a more quantitative basis.

In the early stage of phase separation, the viscoelastic
stress can be approximated from eqs 12 and 13 as

When the temporal change of vbp is faster than the
relaxation time, eq 21 reduces to

where ubp ) ∫0
t dt′ vbp(t′) is the displacement vector of

polymers. In this case, the viscoelastic stress behaves
elastically. In the limit that τB, τS f ∞, thus, the
viscoelastic model reduces to the gel model.10,35

It is reasonable to assume that the motion of polymer
vbp is faster than the relaxation of viscoelastic stresses
in the early stage of phase separation (eq 22). Thus, the
time development equation of the concentration field
around the initial concentration φ0, δφ(rb, t) ) φ(rb, t) -
φ0, is approximated up to the second order in δφ as

Here the relation δφ ≈ - φ0∇B ‚ ubp is used.
The first term of the right-hand side (rhs) of eq 23

corresponds to the Cahn’s linearized theory. The coef-
ficient of this term includes the mechanical stresses in
the form of the longitudinal modulus, GB(φ0) + (2 - 2/d)-
GS(φ0). This appearance of the longitudinal modulus is
natural since the spinodal decomposition is described
by the superposition of the plane waves. Since the
spinodal line is effectively shifted to the low temperature
due to the bulk and the shear stresses in the early stage
of phase separation, spinodal decomposition is sup-
pressed and the phase separation proceeds in the
nucleation-growth-type mechanism.

Here we consider how the viscoelasticity affects the
selection of the domain morphology. The second term
of the rhs of eq 23 is the lowest even order of δφ and
plays an important role in determining which phase
becomes a majority one. Generally, the condition [b(φ0,
ø) ) 0] gives the composition symmetry line, where the
two phases has the equal volume, or the pattern is
symmetric against the exchange of the phase of δφ > 0
with that of δφ < 0. If we assume that the nucleated
droplet has a spherical shape, the coefficient of the

second term is given by

Because the shear mode is effectively decoupled to the
bulk stress and does not affect the diagonal part of the
osmotic tensor for a spherical domain, the contribution
of the shear stress can be neglected in calculating eq
26. Of course, we must consider the contribution of the
shear stress for the other shapes of droplets. For
example, the coefficient depends on GB + 1/3GS for a
cylindrical domain, while it depends on GB + 4/3GS for
a lamellar structure. The possibility of the anisotropic
shape of nuclei will be considered later. For the analyti-
cal argument, however, we assume a spherical shape
for simplicity. For this case, the term (∂/∂φ)GB(φ0)
determines the composition symmetry line. It can be
regarded as a measure of the dynamical asymmetry.
Thus, we conclude that the composition symmetry line
shifts toward the solvent-rich side and the solvent-rich
phase nucleates selectively even when this phase is a
majority one.

In connection to this, it should be noted that Onuki
studied the effects of shear stress on nucleation of a
spherical polymer-rich droplet in a metastable semidi-
lute polymer solution.36 The growth process of the
droplet was mainly studied, and it was demonstrated
that the viscoelastic shear stress decelerates the droplet
growth. In the above, we do not take the shear stress
into account, provided that the droplets are spherical.
For a case of the nucleation and growth of droplets,
however, this assumption is not so easily justified by
analytical arguments; thus, we cannot deny the pos-
sibility that the shear stress may affect which phase is
nucleated. To answer this difficult question, we make
numerical simulations of phase separation with only
shear stress of a step-function form (case f) instead of
the form of eq 15. We confirm that even for this case
the solvent-rich phase is selectively nucleated. This
leads us to a conclusion that the shear stress does not
affect the selectivity of the phase. However, the strong
dependence of the shear modulus on the concentration
(∂/∂φ)GS(φ0) may affect the shape of nucleated domains
although we assume that they are spherical in the above
discussion just for simplicity. For example, when we set
GS ) (d/2)GB(∝ Θ(φ - φ0)) (case g), the nucleated domain
is found to be not spherical but rather oblate. This
anisotropic shape of domains may be realized to reduce
the total deformation energy of the matrix phase. Note
that these anisotropic nuclei are made of a solvent-rich
phase even for this case. This problem may be related
to the anisotropic crack pattern formation in an elastic
medium such as gels. Further analytical and numerical
studies are necessary for clarifying how bulk and shear
stresses affect the early stage of viscoelastic phase
separation.

In the late stage of phase separation, both mechanical
stresses relax and we can neglect the viscoelastic
contributions there. The coefficients of the first and
second-order terms become

σij ) ∫0

t
dt′[GB(φ)e-(t-t′)/τB(φ)

∂kvpkδij +

GS(φ)e-(t-t′)/τS(φ){∂ivpj + ∂jvpi - 2
d
∂kvpkδij}] (21)

σij ) GB(φ)∂kupkδij + GS(φ){∂iupj + ∂jupi - 2
d
∂kupkδij}

(22)

∂δφ

∂t
≈ ∇B2{(a(φ0,ø) - C′∇B2)δφ + b(φ0, ø)δφ

2 + O(δφ
3)}

(23)

a(φ0,ø) ) 1
ú[kBT{φ0(1 - φ0) + ( 1

Np
- 1)φ0(1 - φ0)

2 -

2øφ0
2(1 - φ)2} + (1 - φ0)

2{GB(φ0) + (2 - 2
d)GS(φ0)}]

(24)

C′ ) Cφ0
2(1 - φ0)

2/ú (25)

b(φ0,ø) ) -
kBT

ú {3
2(1 - 1

Np
)φ0

2 + ( 2
Np

- 1)φ0 -

1
2Np

-2øφ0(1 - φ0)(2φ0 - 1)} +

1
ú
(1 - φ0){(1 - 3φ0)

2φ0
GB(φ0) + (1 - φ0)

∂

∂φ
GB(φ0)} (26)
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Figure 1 schematically shows the effective phase dia-
grams for the early stage (gel regime) and the late stage
(fluid regime) of phase separation. The phase diagram
of the former is determined by eqs 24 and 26, while that
of the latter is determined by eqs 27 and 28, respec-
tively. If the system is quenched to the region (B)
between the two lines determined by (eq 26) [b(φ0,ø) )
0] and (eq 28) [b′(φ0,ø) ) 0], the polymer-rich phase
changes from a majority phase to a minority one with
time. Thus, the phase inversion takes place for such a
case. The moving droplet phase and the spongelike
phase may be observed in regions A and C, respectively.6

V. Results and Discussion
A. Time Evolution of Domain Patterns. First we

show how phase separation proceeds in three dimen-
sions. Figure 2 shows the pattern evolution of phase
separation with both bulk and shear stresses (case a).
The images represent the interfaces separating two
phases. The darker and brighter sides of the interface
correspond to a polymer-rich and solvent-rich phase,
respectively. Namely, the darker droplets are the solvent-
rich phase, while the brighter network structure is the
polymer-rich one.

In Figure 2, phase inversion is clearly observed. The
solvent-rich phase nucleates after a frozen period de-
spite this phase is thermodynamically a majority one.
Then, these droplets grow in size, and at the same time,
the polymer-rich phase shrinks as in the volume-
shrinking phase transition of gels. The polymer-rich
phase decreases its volume fraction, keeping the con-
nectivity. As a result, the well-developed continuous
networklike structure of the polymer-rich phase is
formed even though it is thermodynamically a minority
phase. In the late stage, the viscoelastic stresses relax,
and this networklike structure becomes unstable and
breaks up into polymer-rich droplets due to the hydro-
dynamic tube instability.6,9,10

The simulation reproduces the basic features of our
experimental observation.4,5 The pattern evolution in 3D
simulations is essentially the same as that of our
previous 2D simulations.21 Reflecting the difference in
the dimensionality, however, both phases are continu-
ous even for networklike morphology for 3D. In other
words, the networklike structure is a bicontinuous one.
We can intentionally produce the networklike structure
of a minority phase. Since the viscoelastic properties of
a system is dominated by the connectivity of the more
viscoelastic phase, the networklike structure transiently
formed during viscoelastic phase separation should be
much more viscoelastic than the final droplet structure.
This point is very important for the industrial applica-
tions.

We also simulate other cases to reveal the roles of
each stress by comparing the results. Figures 3-6 show
the simulated pattern evolutions for phase separation
with no stresses (b), with only shear stress (c), with only

bulk stress (d), and with both bulk and shear stresses
having a longer shear relaxation time (e), respectively
(see Table 1). The volume fraction is the same for all
the cases. Note that the simulation without any stresses
(case b) corresponds to usual phase separation in a fluid
model (model H). For this case, the well-known behavior
is observed: The droplets of a minority phase (a

Figure 1. Schematic phase diagram of a dynamically asym-
metric mixture. Within a shaded region (B), phase inversion
should occur during phase separation.

Figure 2. Simulated pattern evolution of phase separation
with both bulk and shear stresses (case a). The light-gray side
of the interface corresponds to the polymer-rich phase, while
its dark-gray side corresponds to the solvent-rich phase.

Figure 3. Simulated pattern evolution of phase separation
without any mechanical stresses (case b).

a′ )
kBT

ú
φ0(1 - φ0) { 1

NP
+ (1 - 1

Np
)φ0 -

2øφ0(1 - φ0)} (27)

b′ )
kBT

ú { 1
2Np

+ (1 - 2
NP

)φ0 + 3
2 ( 1

NP
- 1)φ0

2 -

2øφ0(1 - φ0)(1 - 2φ0)} (28)
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polymer-rich phase) emerge just after the temperature
quench and the droplets grow in time by the Lifshitz-
Slyozov mechanism37 and/or the coalescence mecha-
nism.38 Although the behavior of case c is essentially
the same as that of case b, the coarsening rate of case
c is a bit slower than that of case b (see Figure 11),
because of the higher viscosity of a polymer-rich phase.
A larger number of noncircular droplets are observed
in case c than in case b. This is due to the fact that the
shear stress slows down the shape-relaxation process.

In case d, on the other hand, the solvent-rich phase
nucleates and the polymer-rich phase shrinks as in gels.
The early-stage pattern evolution in case d is quite
similar to that in case a. However, there is a large
difference in the late stage between them: In case d,
the networklike structure breaks up and the polymer-
rich phase becomes spherical at the time when the
volume shrinking is finished, while in case a the
network structure keeps existing even after that time.
Accordingly, the well-developed networklike structure
is never formed in case d.

The behavior of case e is also similar to that of case
a in the early stage, as expected. However, the pattern
relaxation from a network to a droplet structure after
the volume shrinking is much more retarded even
compared to that in case a because the relaxation time
of the shear stress is longer for case e than for case a.
The final morphological transition to a droplet structure
is not observed in our simulations simply due to the
limitation of the computational time. The late-stage
patterns for case e resemble the scanning electron
microscope (SEM) images of fibrillar structures observed
in phase separation of polymer solution.39 In relation
to this, we note that the dynamical asymmetry, which
is characterized by the difference in the viscoelastic
properties between the two phases, may be much
stronger in real polymer solutions than in our simula-
tions.

The above simulation results for various cases clearly
demonstrate the roles of bulk and shear stresses. The
bulk stress is responsible for the selective nucleation of
a solvent-rich phase and the gellike volume shrinking
behavior in the early stage, while the shear stress is
responsible for the formation of the well-developed
networklike bicontinuous structure. In the next section,
we analyze how the osmotic, bulk, and shear stresses
develop in time.

B. Temporal Change in Mechanical and Osmotic
Forces and Their Roles. Figure 7 shows the temporal
changes in the averaged magnitudes per lattice of the
three types of forces, namely, the thermodynamic force
FBφ ) -∇B ‚ Π, the bulk mechanical force FBB ) -∇B ‚ σB,
and the shear mechanical force FBS ) -∇B ‚ σS for case a.

After the temperature quench, the amplitude of the
thermodynamic force increases and the bulk mechanical
force follows it.40 The thermodynamic and the bulk
mechanical forces have their peaks almost at the same
time t ∼ 340. As will be shown in the next section, the
volume shrinking has finished at this time. Both forces
are closely related to the divergence of the velocity fields
of polymer, ∇B ‚ vbp. The thermodynamic osmotic force
causes the diffusional motion of polymer, and this
motion induces the bulk stress. This is why the bulk
force follows the osmotic force. Note that even if we use
the larger value of GB, the bulk stress can never exceed
the osmotic one. These two forces have the opposite
directions with each other, and thus they are mostly
canceled out. As a result, the initial growth of concen-
tration fluctuations, which is characteristic of usual
spinodal decomposition, is significantly suppressed. The
shear stress force has a peak at a time t ∼ 410, retarded
from those of the osmotic and the bulk forces by ∆t ∼
70. The networklike structure begins to break up at this
time t ∼ 410. The degree of this retardation is dependent
upon the relaxation time of the shear stress. The larger
the shear relaxation time is, the longer the lifetime of
the networklike structure is. In the networklike struc-

Figure 4. Simulated pattern evolution of phase separation
with only shear stress (case c).

Figure 5. Simulated pattern evolution of phase separation
with only bulk stress (case d).

Figure 6. Simulated pattern evolution of phase separation
with both bulk and shear stresses (case e). The relaxation time
of shear stress is longer than that of case a.
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ture, the interface force, which is included in the off-
diagonal part of the osmotic tensor, and the shear
mechanical force are balanced as

The structure of the asymmetric fibrillar pattern is
determined by this force balance condition.9 We believe
that the contribution of the osmotic stress (interface
force) may be negligible in pattern selection for the
elastic-force dominant regime. There are small peaks
in the curves of the osmotic and bulk forces around t ∼
800. These peaks may reflect the morphological change
from a network to a droplet structure. However, such
peaks are not observed in our previous 2D simulations.
Thus, further careful studies are required to clarify this
point.

C. Composition Change during Phase Separa-
tion. Figure 8 shows the temporal change in the volume
fraction for cases a-e. We assign the region with φ >
0.28 to the polymer-rich phase. For cases without the
bulk stress (b and c), the volume fraction almost reaches
the final value of 0.245 soon after the temperature
quench. On the other hand, they approach to the final

value gradually for the case with bulk stress (a, d, and
e). Note that the volume relaxation time strongly
depends on the bulk relaxation time τB and is almost
independent of the bulk modulus GB. This is checked
by our simulations, which are not presented here.

The effective osmotic pressure is given by9

Because the final equilibrium volume fraction is deter-
mined by ø and Np in our model and does not depend
on the viscoelastic parameters, all the studied cases,
a-e, have the same equilibrium volume fraction of
∼0.245. The volume fraction during the volume shrink-
ing at a time t is almost equal to that determined by
the effective osmotic pressure (see eq 30). The longer
the bulk relaxation time is, the more slowly the volume
fraction approaches to the final value. It should be
stressed here that shear stress never affects the kinetics
of volume shrinking.

We also study the concentration change in viscoelastic
phase separation by analyzing the concentration dis-
tribution function. Figure 9 shows the temporal change
in the concentration distribution function for cases a and
b. Figure 8 corresponds to the time dependence of the
volume fraction of the region φ > 0.28. For case a, the
width of the concentration distribution increases much

Table 1. O Dependences of Moduli and Relaxation Times of Both Bulk and Shear Stresses Used in Simulations and Their
Roles in the Early and Late Stage of Phase separation

case GB(φ) τB(φ) GS(φ) τS(φ)
phase

inversion morphology of droplets networklike structure

a 5.0Θ(φ - φ0) 10.0φ2 0.2φ2 10.0φ2 o spherical o
b × (polymer-rich droplets) ×
c 0.2φ2 50.0φ2 × (polymer-rich droplets) ×
d 5.0Θ(φ - φ0) 10.0φ2 o spherical ×
e 5.0Θ(φ - φ0) 10.0φ2 0.2φ2 50.0φ2 o spherical o
f 7.5Θ(φ - φ0) 10.0φ2 × (polymer-rich droplets) (numerically unstable)
g 5.0Θ(φ - φ0) 10.0φ2 7.5Θ(φ - φ0) 10.0φ2 o oblate (numerically unstable)

Figure 7. Temporal change in osmotic, bulk, and shear forces
for case a.

Figure 8. Temporal change in the volume fraction of the
polymer-rich phase for cases a-e.

∂i[C{∂iφ∂jφ - 1
d

(∂lφ)(∂lφ)δij} - σSij] ) 0 (29)

Figure 9. Temporal change in the concentration distribution
function for cases a (a) and b (b).

πeff(t) ≈ (φ∂fFH

∂φ
- fFH) + GB

φ - φ0

φ0
exp(-t/τB) (30)
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more slowly in the early stage than for case b since the
growth of the concentration fluctuations are signifi-
cantly suppressed for case a. Then the peak which
corresponds to the solvent-rich droplets appears and
grows, while the peak which is located around the initial
concentration decays and disappears. These behaviors
reflect the selective nucleation of the thermodynamically
majority phase and the gellike volume shrinking. At t
∼ 300, the volume fraction of the polymer-rich phase is
nearly 50%, and the structure apparently looks similar
to the usual bicontinuous phase separation. It should
be noted, however, that the concentration distribution
function is quite asymmetric, which is markedly differ-
ent from usual bicontinuous phase separation. At t ∼
340 when the volume shrinking stops, the two peaks
are located at φe ≈ 0.1 and 0.9, which correspond to the
equilibrium concentrations. Further change in the
concentration distribution is not observed for case a. For
case b, on the other hand, a peak of the polymer-rich
phase first appears at the final equilibrium concentra-
tion of the polymer-rich phase, φe ≈ 0.9. Although the
final shapes of the histogram of cases a and b are, of
course, the same as each other, their kinetic processes
are very different. It is evident that this difference is

caused by the bulk viscoelastic stress (see section IV).
D. Temporal Change in the Scattering Function.

Figure 10 demonstrates the evolution of the scaled
scattering function for viscoelastic phase separation
(case a) and normal phase separation (case b). The
scaled scattering function S̃(q,t) is calculated by using
3D Fourier transformation as

Figure 10b shows that for a fluid model (case b) the
scaled scattering function is time independent except
for the small wavenumber region. For case a, on the
other hand, it does not collapse onto a single master
curve at all. This indicates that the self-similarity
hypothesis and the dynamical scaling law (see eqs 34
and 35), which are known to hold for fluid-fluid phase
separation, break down for viscoelastic phase separa-
tion. Note that the dynamical scaling law is expressed
as

where F is a scaling function.
We demonstrate the temporal changes in the char-

acteristic wavenumber calculated by eq 33 in Figure 11.
The growth exponent â in the late stage of viscoelastic
phase separation (case a) is about 0.27. However, since
the dynamic scaling relation (eq 34) does not hold in
this case and the exponent depends on the viscoelastic
parameters (especially, the relaxation time of the shear
stress, τS), it is not meaningful to discuss the value of
the exponent.

For cases a and d, in which phase inversion occurs,
the characteristic wavenumber suddenly decreases at
the time of phase inversion. This time coincides with
the end of the volume shrinking, which indicates that
the drastic change of the domain pattern, i.e., phase
inversion, takes place just after the completion of the
volume shrinking. The characteristic length right after
the volume shrinking is primarily determined by the
spatial distribution of the solvent-rich droplets nucle-
ated in the early stage. If the bulk stress suppresses
concentration fluctuations more strongly, the probability
of the nucleation of solvent-rich droplets becomes smaller.
Thus, the distance between the solvent-rich droplets,
which is one of the characteristic lengths of phase
separation, should become larger.

Finally, it should be noted that pattern evolution
should in principle become self-similar in the very late
(asymptotic) regime, where phase separation should be
described by a fluid model (model H). However, this
regime is rather difficult to observe either experimen-
tally or numerically.

Figure 10. Time evolution of the scaled scattering function
of cases a (a) and b (b).

Figure 11. Temporal change of the characteristic wavenum-
ber for cases a-e.

S(q,t) )
∫|qb′|)q

|qb′|)q+dq
dqbS(qb,t)

∫|qb′|)q

|qb′|)q+dq
dqb′

(31)

S̃(q,t) )
S(q,t)

∫dq′ S(q′,t)
(32)

〈q(t)〉 )
∫dqb |qb|S(qb,t)

∫dqb S(qb,t)
(33)

S̃(q,t) ) 〈q(t)〉-dF(q/〈q(t)〉) (34)

〈q(t)〉 ∝ t-â (35)
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E. Topological Change of Domain Morphology
during Phase Separation. 1. Curvature Analysis.
We also analyze the mean and Gaussian curvatures of
the interface to study the topological characteristics of
the phase-separated structure.41-44 To do so, we first
define the interface as follows. We define Φ at each
lattice point (R,â,γ) so that Φ ) 1 for φ g φ0 while Φ
) 0 for φ < φ0. Then we introduce the interface func-
tion d(R,â,γ) so that d ) 1 when Φ(R,â,γ) ) 1 and
Πl)(1,0Πm)(1,0Πn)(1,0Φ(R + l, â + m, γ + n) ) 0;
otherwise, d ) 0. Thus, the interface Σ is defined by a
group of points, where d(R,â,γ) ) 1. Then we calculate
at all the lattice points the quantities

where nb ) ∇Bφ/|∇Bφ|. These quantities H̃ and K̃ on the
interface Σ can be regarded as the mean and Gaussian
curvatures H and K, respectively. Then the average
mean and Gaussian curvatures, 〈H〉 and 〈K〉, are,
respectively, calculated as

In Figure 12, the temporal changes of the distribution
of the mean curvature H and the Gaussian curvature
K in the H-K plane are presented for cases a and b. In
Figure 12b, the distribution of the curvatures is almost
localized on the parabolic curve K ) H2(H < 0), which

means that the two principal curvatures have the same
value at all points on the interface. That is, the polymer-
rich domains have a spherical shape. The absolute
average value of H, |〈H〉|, decreases with time. Since the
inverse of the absolute value of the mean curvature
coincides with the average radius of a spherical droplet,
the width of the curvature distribution corresponds to
the size distribution of droplets in a real space. Thus,
the shift of the distribution to the smaller absolute value
reflects the coarsening process of the droplet structure.

The behavior of case a is, on the other hand, quite
different from that of case b. The (H,K) distribution is
localized on the curve K ) H2(H > 0) in the early stage
of phase separation, which means that the solvent-rich
spherical droplets are formed. Next, the distribution
shifts to the region H ∼ 0, K < 0 at t ∼ 300. The
distribution pattern at this time is similar to that of a
bicontinuous structure of symmetric spinodal decom-
position obtained experimentally by Jinnai et al.41 Note
that the volume fraction of the polymer-rich phase is
nearly 50% in their experiments and also at t ∼ 300 in
our simulation of case a. As time goes on, the (H,K)
distribution moves toward the curve K ) H2(H < 0).

In Figure 13 the temporal changes in the averaged
mean and Gaussian curvatures are presented for cases
a-e. Since our method to calculate the curvatures
requires the sharp interface dividing the two phases,
we cannot analyze the behaviors of the early stage (the
shaded region in Figure 13) properly. For cases without
bulk stress [(b) and (c)], the polymer-rich droplet
structure, which has negative 〈H〉 and positive 〈K〉, is
formed and then coarsens with time. Reflecting this
coarsening process, their absolute values gradually
decrease with time. For cases with bulk stress (a, d, and
e), on the other hand, the averaged mean curvature has
a positive value in contrast to the above cases (b and
c). Then, its sign becomes negative. This change in the
sign of the averaged mean curvature reflects the phase
inversion. On the other hand, the averaged Gaussian
curvature changes its sign twice, namely, from positive

Figure 12. Temporal change in the distribution of mean and
Gaussian curvatures of the interface for cases a (a) and b (b).

Figure 13. Temporal changes in the averaged mean (a) and
Gaussian curvatures (b) of the interface.

H̃ ) ∂ini/2 (36)

K̃ ) {(∂knk)
2 - (∂inj)(∂ini)}/2 (37)

〈H〉 ) ∑
R,â,γ

H̃(R,â,γ)d(R,â,γ)/ ∑
R,â,γ

d(R,â,γ) (38)

〈K〉 ) ∑
R,â,γ

K̃(R,â,γ)d(R,â,γ)/ ∑
R,â,γ

d(R,â,γ) (39)
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to negative and then from negative to positive, for cases
a and d. The first change reflects the morphological
change from the nucleated solvent-rich droplet struc-
ture, which is characterized by positive K, to the
bicontinuous pattern with saddle-like structures, which
is characterized by negative K. The second one reflects
that this asymmetric bicontinuous structure breaks up
and transforms into the polymer-rich droplet structure,
which is characterized by positive K. Since the relax-
ation time of the shear stress is long for case e, the
breakup of the network structure and the resulting
morphological change to the droplet structure are not
observed within the computation time. So, the averaged
Gaussian curvature remains negative in the late stage
and does not yet change its sign for case e.

Figure 13 shows that the time when the averaged
Gaussian curvature has the minimum value is almost
the same as the time when the averaged mean curva-
ture changes its sign at t ∼ 300. This time also coincides
with the time when the volume fraction (see section VC)
is nearly 50%. From the direct observation of Figure 2,
the structure at this time is quite similar to the
bicontinuous structure observed in normal phase sepa-
ration and the sponge phase in microemulsions. As time
goes on, the averaged mean curvature has the minimum
value at t ∼ 340. Then, it approaches to zero asymptoti-
cally, reflecting the decrease in the mean curvature due
to the coarsening process in the late stage. This time t
∼ 340 corresponds to the end of gellike volume shrink-
ing of the polymer-rich phase.

Almost at the same time, the averaged Gaussian
curvature enters into a plateau regime for cases with
both stresses (cases a and e). This plateau is related to
the formation of the network structure due to the shear
stress, which is supported by the fact that the plateau
is not observed for case d. Interestingly, it is shown for
case e that although the absolute value of the averaged
mean curvature decreases, the plateau is quite flat at t
> 400. Note that this behavior is also observed in case
a although it is not so pronounced. According to the
Gauss-Bonnet theorem, the integrated value of the
Gaussian curvature on the whole interface is topologi-
cally invariant. Namely, the integrated Gaussian cur-
vature is not changed unless the events of the breakup
of the network and/or the coagulation of droplets occur.
However, the Gaussian curvature, which is shown here,
is simply the averaged value. Thus, the behavior
observed in case e does not necessarily mean that the
structure coarsens without any topological change.
Actually, the breakup of the network is observed even
for t > 400. We speculate that almost no change in the
averaged Gaussian curvature in the late stage results
from the canceling out of the two competing effects, the
breakup of a network structure into a droplet one and
the decrease in the total amount of the interface due to
the domain-shape relaxation driven by the interface
tension. This point will be discussed in the next section.

As described above, when the volume shrinking stops,
the structure is bicontinuous for case a. It is believed
that for an ordinary dynamically symmetric system a
bicontinuous structure is observed when the volume
fraction of one of the separated phases is almost equal
to that of the other. In such a structure, the averaged
mean curvature 〈H〉 is nearly zero.41 On the other hand,
a very asymmetric bicontinuous structure, in which the
averaged mean curvature has a nonzero value (〈H〉 <
0), can be observed for viscoelastic phase separation:

For this structure, both phases are percolated even for
a small volume fraction of a polymer-rich phase.

2. Analysis of the Euler Characteristic. Next we
analyze the topological change during viscoelastic phase
separation in terms of the Euler characteristic øE.
Figure 14 shows the temporal changes in øE for normal
phase separation (case b) and viscoelastic phase separa-
tion with a longer relaxation time of shear stress (case
e). We calculate øE by two different methods. One is the
integrated value of Gaussian curvatures over the whole
interface Σ as

The other is the topological method: First we express
the domain structure by polygons on the domain inter-
face. Since we use the cubic lattice in this study, the
interface is presented by squares. Then øE can be
obtained as

where F, V, and E are the number of faces, vertexes,
and edges of all polygons, respectively.43 According to
the Gauss-Bonnet theorem, øE

(1) should be equal to øE
(2).

We confirm that the relation øE
(1) = øE

(2) holds well in the
late stage, which supports the validity of our analysis.
The slight difference between øE

(1) and øE
(2) and in the

early stage (t < 300) may stem from the uncertainty in
the definition of the interface in calculating øE

(1).
For case b, øE monotonically decreases reflecting the

decrease in the number of droplets. Note that for a
droplet structure the number of droplets is given by øE/
2. For case e, on the other hand, the behavior of øE is
similar to that of the averaged Gaussian curvature 〈K〉
(see Figure 13b). By definition, the time when the sign
of øE becomes negative should coincide with that for the
averaged Gaussian curvature. At t ∼ 300, øE has the
minimum value, and this large negative value of øE
means that the domain structure is highly intercon-
nected. Note that this time again corresponds to the
time when 〈K〉 is minimal. However, the behavior of øE
in the late stage of case e is different from that of 〈K〉.
Namely, the value of øE becomes half from t ) 500 to t
) 1000 (see Figure 14), while the value of 〈K〉 of case e
is almost constant, or it fluctuates within ∼5% there.
This strongly indicates that the topological feature of
the networklike structure is changing with time, reflect-

Figure 14. Temporal changes in the Euler characteristics for
cases b and e by using two calculation methods (the integrated
Gaussian curvature øE

(1) and the topological measure øE
(2)).

øE
(1) )

1

2π
∫Σ K dS )

1

2π
∑

R,â,γ
K̃(R,â,γ)d(R,â,γ) (40)

øE
(2) ) F + V - E (41)
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ing the breakup of the polymer-rich network. This
supports the discussion in the preceding section.

Finally, it may be worth noting that these topological
features can hardly be obtained from the q-space
analysis, as mentioned in section VD. The breakdown
of the self-similarity is shown much more clearly by the
topological analysis in real space than that by q-space
analysis. Thus, we conclude that the curvature analysis
and the analysis of the topological measure is quite
powerful for characterizing the pattern evolution of
viscoelastic phase separation.

VI. Conclusion
Viscoelastic phase separation is simulated in three

dimensions. The results are basically consistent with
what is observed in our 2D simulations.21 The roles of
bulk and shear stresses in 3D phase separation are
found to be the same as those in 2D one, despite that
the shear stress includes the dimensionality in its
definition. The physical origin of a fibrillar pattern
experimentally observed in a 3D phase-separated poly-
mer solution is discussed. The bulk stress is directly
coupled to the concentration diffusion. Thus, it induces
the volume shrinking of the polymer-rich phase and the
resulting phase inversion. The shear stress, on the other
hand, plays a key role in the formation of a well-
developed networklike pattern, whose structure is de-
termined by the mechanical force balance condition. To
elucidate the topological characteristics of patterns, we
characterize the domain morphology by calculating the
mean and Gaussian curvatures, their distributions, and
the Euler characteristic, in addition to the conventional
analysis in q-space. The topological analysis indicates
that the network structure in viscoelastic phase separa-
tion essentially differs from the well-known bicontinu-
ous structure (〈H〉 ≈ 0) observed in a mixture of
symmetric composition: It should be called an “asym-
metric” bicontinuous structure (〈H〉 * 0).

We believe that the physical origin of bulk stress is
due to the transient gel formation, which is universal
to dynamically asymmetric mixtures.8,45,46 This point
needs further study.
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