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We investigate the dynamics of spreading of a small liquid droplet in gas in a one-component simple fluid,
where the temperature is inhomogeneous around 0.9Tc and latent heat is released or generated at the interface
upon evaporation or condensation �with Tc being the critical temperature�. In the scheme of the dynamic van
der Waals theory, the hydrodynamic equations containing the gradient stress are solved in the axisymmetric
geometry. We assume that the substrate has a finite thickness and its temperature obeys the thermal diffusion
equation. A precursor film then spreads ahead of the bulk droplet itself in the complete wetting condition.
Cooling the substrate enhances condensation of gas onto the advancing film, which mostly takes place near the
film edge and can be the dominant mechanism of the film growth in a late stage. The generated latent heat
produces a temperature peak or a hot spot in the gas region near the film edge. On the other hand, heating the
substrate induces evaporation all over the interface. For weak heating, a steady-state circular thin film can be
formed on the substrate. For stronger heating, evaporation dominates over condensation, leading to eventual
disappearance of the liquid region.
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I. INTRODUCTION

Extensive efforts have been made on the static and dy-
namic properties of wetting transitions for various fluids and
substrates both theoretically and experimentally �1�. In par-
ticular, spreading of a liquid has been studied by many
groups �1–8� since it is of great importance in a number of
practical situations such as lubrication, adhesion, and paint-
ing. Hydrodynamic theories were developed for spreading of
an involatile liquid droplet in gas in an early stage of the
theoretical research �1,4,7–9�. A unique feature revealed by
experiments �2,10–13� is that a thin precursor film is formed
ahead of the liquid droplet itself in the complete wetting
condition. Hardy first reported its formation ascribing its ori-
gin to condensation at the film edge �2�, but it has been
observed also for involatile fluids �10–13�. To understand
nanometer-scale spreading processes, a number of micro-
scopic simulations have been performed mainly for fluids
composed of chainlike molecules �14–21�.

However, understanding of the wetting dynamics of vola-
tile liquids is still inadequate. We mention some examples
where evaporation and condensation come into play. In their
molecular-dynamics simulation �19�, Koplik et al. observed
evaporation of a droplet and a decrease in the contact angle
upon heating a substrate in the partial wetting condition. In
their experiment �22�, Guéna et al. observed that a weakly
volatile droplet spread as an involatile droplet in an initial
stage but disappeared after a long time due to evaporation in
the complete wetting condition. In a near-critical one-
component fluid �23�, Hegseth et al. observed that a bubble
was attracted to a heated wall even when it was completely
wetted by liquid in equilibrium �at zero heat flux�, where the
apparent contact angle of a bubble increased with the heat
flux.

In addition to spreading on a heated or cooled substrate,
there are a variety of situations such as droplet evaporation
�24–28�, boiling on a heated substrate �29–31�, and motion
of a bubble suspended in liquid �32,33�, where latent heat

generated or released at the interface drastically influences
the hydrodynamic processes. In particular, a large tempera-
ture gradient and a large heat flux should be produced around
the edge of a liquid film or the contact line of a droplet or
bubble on a substrate �28,30�. The temperature and velocity
profiles should be highly singular in these narrow regions.
Here, an experiment by Höhmann and Stephan �31� is note-
worthy. They observed a sharp drop in the substrate tempera-
ture near the contact line of a growing bubble in boiling.
Furthermore, we should stress relevance of the Marangoni
flow in multicomponent fluids in two-phase hydrodynamics
�25,29,34�, where temperature and concentration variations
cause a surface tension gradient and a balance of the tangen-
tial stress induces a flow on the droplet scale.

In hydrodynamic theories, the gas-liquid transition has
been included with the aid of a phenomenological input of
the evaporation rate on the interface J. Some authors �24–26�
assumed the form J�r , t�=J0 / �re�t�2−r2�1/2 for a thin circular
droplet as a function of the distance r from the droplet center,
where re�t� is the film radius and J0 is a constant �35�. In the
framework of the lubrication theory, Anderson and Davis
�36� examined spreading of a thin volatile droplet on a
heated substrate by assuming the form J= �TI−Tcx� /K�,
where TI is the interface temperature, Tcx is the saturation
�coexistence� temperature, and K� is a kinetic coefficient. In
these papers, the dynamical processes in the gas have been
neglected.

Various mesoscopic �coarse-grained� simulation methods
have also been used to investigate two-fluid hydrodynamics,
where the interface has a finite thickness. We mention phase
field models of fluids �mostly treating incompressible binary
mixtures� �37–52�, where the gradient stress is included in
the hydrodynamic equations �see a review in Ref. �39��. In
particular, some authors numerically studied liquid-liquid
phase separation in heat flow �38,43,47,51�, but these authors
treated symmetric binary mixtures without latent heat. Re-
cently, one of the present authors developed a phase field
model for compressible fluids with inhomogeneous tempera-
ture, which is called the dynamic van der Waals model

PHYSICAL REVIEW E 82, 021603 �2010�

1539-3755/2010/82�2�/021603�14� ©2010 The American Physical Society021603-1

http://dx.doi.org/10.1103/PhysRevE.82.021603


�48,49�. In its framework, we may describe gas-liquid tran-
sitions and convective latent heat transport without assuming
any evaporation formula. In one of its applications �28�, it
was used to investigate evaporation of an axisymmetric
droplet on a heated substrate in a one-component system.
Our finding there is that evaporation occurs mostly near the
contact line. We also mention the lattice Boltzmann method
to simulate the continuum equations, where the molecular
velocity takes discrete values �44–47,52�. However, this
method has not yet been fully developed to describe evapo-
ration and condensation.

In this paper, we will simulate spreading using the dy-
namic van der Waals model �48,49�. We will treat a one-
component fluid in a temperature range around 0.9Tc, where
the gas and liquid densities are not much separated. Namely,
we will approach the problem relatively close to the critical
point. Then the mean free path in the gas is not long, so that
the temperature may be treated to be continuous across an
interface in nonequilibrium. When the gas is dilute, the phase
field approach becomes more difficult to treat gas flow pro-
duced by evaporation and condensation. It is known that the
temperature near an interface changes sharply in the gas over
the mean free path during evaporation �53�.

The organization of this paper is as follows. In Sec. II, we
will present the dynamic equations with appropriate bound-
ary conditions. In Sec. III, the simulation method will be
explained. In Sec. IV, numerical results of spreading will be
given for cooling and heating the substrate.

II. DYNAMIC VAN DER WAALS THEORY

When we discuss phase transitions with inhomogeneous
temperature, the free-energy functional is not well defined. In
such cases, we should start with an entropy functional in-
cluding a gradient contribution, which is determined by the
number density n=n�r , t� and the internal energy density e
=e�r , t� in one-component fluids. Here, we present minimal
forms of the entropy functional and the dynamic equations
needed for our simulation.

A. Entropy formalism

We introduce a local entropy density Ŝ= Ŝ�r , t� consisting
of regular and gradient terms as �48,49�

Ŝ = ns�n,e� − 1
2C��n�2. �2.1�

Here s=s�r , t� is the entropy per particle depending on n and
e. The coefficient C of the gradient term can depend on n
�49�, but it will be assumed to be a positive constant inde-
pendent of n. The gradient entropy is negative and is particu-
larly important in the interface region. The entropy func-

tional is the space integral Sb��drŜ in the bulk region. As a
function of n and e, the temperature T is determined from

1

T
= ��Sb

�e
	

n
= n� �s

�e
	

n

. �2.2�

The generalized chemical potential �̂ including the gradient
part is of the form

�̂ = − T��Sb

�n
	

e
= � − TC�2n , �2.3�

where �=−T���ns� /�n�e is the usual chemical potential per
particle. In equilibrium T and �̂ are homogeneous constants.

In the van der Waals theory �54�, fluids are characterized
by the molecular volume v0 and the pair-interaction energy �.
As a function of n and e, s is written as

s = kB ln��e/n + �v0n�3/2�1/v0n − 1�� + s0, �2.4�

where s0 /kB=ln�v0�m /3��2�3/2�+5 /2 with m being the mo-
lecular mass. We define T as in Eq. �2.2� to obtain the well-
known van der Waals expressions for the internal energy e
and the pressure p=n�+Tns−e,

e = 3nkBT/2 − �v0n2, �2.5�

p = nkBT/�1 − v0n� − �v0n2. �2.6�

The critical density, temperature, and pressure read

nc = 1/3v0, Tc = 8�/27kB, pc = �/27v0, �2.7�

respectively. Macroscopic gas-liquid coexistence with a pla-
nar interface is realized for T�Tc and at the saturated vapor
pressure p= pcx�T�.

With the introduction of the gradient entropy, there arises
a length � defined by

� = �C/2kBv0�1/2, �2.8�

in addition to the molecular diameter 
v0
1/3. From Eq. �2.3�

the correlation length 	 is defined by 	−2= ��� /�n�T /TC, so 	
is proportional to � as

	/� = n�2v0kBTKT�1/2, �2.9�

where KT= ��n /�p�T /n is the isothermal compressibility. The
interface thickness is of order 	 in two-phase coexistence and
the surface tension 
 is estimated as


 
 kBT�1 − T/Tc�3/2�/v0, �2.10�

in the mean-field theory �see the Appendix�. The ratio � /v0
1/3

should be of order unity for real simple fluids. However, we
may treat � as an arbitrary parameter in our phase field
scheme.

In our previous paper �49�, the internal energy density
contains a positive gradient part in addition to the regular
part e expressed in terms of T and n as in Eq. �2.5�. Namely,
the total internal energy density is the sum e+K��n�2 /2,
where the coefficient K may depend on n. The gradient term
in the Helmholtz free-energy density is then of the form
M��n�2 /2 with M =CT+K. In this paper, however, we as-
sume C�0 and K=0 for simplicity, neglecting the gradient
energy. This approximation should not affect the essential
aspects of the dynamical effects in this paper.

B. Hydrodynamic equations

We set up the hydrodynamic equations from the principle
of positive entropy production in nonequilibrium �55�. The
mass density �=mn obeys the continuity equation,
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�

�t
� = − � · ��v� , �2.11�

where v is the velocity field assumed to vanish on all the
boundaries. In the presence of an externally applied potential
field U�r� �per unit mass�, we write the equation for the
momentum density �v as

�

�t
�v = − � · ��vv + 
J − �J� − � � U . �2.12�

In our previous work �49� we set U=gz for a gravitational
field with g being the gravity acceleration. We note that U
may also represent the van der Waals interaction between the
fluid particles and the solid depending the distance from the
wall �1�. The stress tensor is divided into three parts. �vv is

the inertial part. 
J = �
ij� is the reversible part including the
gradient stress tensor,


ij = �p − CT�n�2n + 1
2 ��n�2���ij + CT��in��� jn� ,

�2.13�

where p is the van der Waals pressure in Eq. �2.6�. Hereafter
�i=� /�xi with xi representing x, y, or z. �J= ��ij� is the vis-
cous stress tensor expressed as

�ij = ���iv j + � jvi� + �� − 2�/3��� · v��ij , �2.14�

in terms of the shear viscosity � and the bulk viscosity �.
Including the kinetic-energy density and the potential energy,
we define the �total� energy density by eT=e+�v2 /2+�U. It
is a conserved quantity governed by �56�

�

�t
eT = − � · �eTv + �
J − �J� · v − � � T� , �2.15�

where � is the thermal conductivity. With these hydrody-
namic equations including the gradient contributions, the en-

tropy density Ŝ in Eq. �2.1� obeys

� Ŝ

�t
+ � · 
Ŝv − Cn�� · v� � n −

�

T
� T� =

�̇v + �̇�

T
,

�2.16�

where the right-hand side is the non-negative-definite en-
tropy production rate with

�̇v = �
ij

�ij� jvi, ��̇ = ���T�2/T . �2.17�

In passing, the constant s0 in Eq. �2.4� may be omitted in Eq.
�2.16� owing to the continuity equation �2.11�.

C. Boundary conditions

We assume the no-slip boundary condition,

v = 0 , �2.18�

on all the boundaries for simplicity. However, a number of
molecular-dynamics simulations have shown that a slip of
the fluid velocity tangential to the wall becomes significant
around a moving contact line �57�. On the basis of their

molecular-dynamics simulation �58�, Qian et al. proposed to
use a generalized Navier boundary condition on a solid
boundary in the continuum limit. In our work, even under the
no-slip boundary condition, a significant velocity field is in-
duced around a contact line �28� or an advancing film edge.

We assume the surface entropy density �s�ns� and the sur-
face energy density es�ns� depending on the fluid density at
the surface, written as ns. The total entropy including the
surface contribution is of the form

Stot =� drŜ +� da�s, �2.19�

where �da is the surface integral over the boundaries. The
total fluid energy is given by

Etot =� dr�e + 1
2�v2 + �U� +� daes. �2.20�

We assume that there is no strong adsorption of the fluid
particles onto the boundary walls. The fluid density is con-
tinuously connected from the bulk to the boundary surfaces;
for example, we have ns�x ,y , t�=limz→+0 n�r , t� at z=0. Then
the total particle number of the fluid in the cell is the bulk
integral N=�drn.

We assume that the temperatures in the fluid and in the
solid are continuously connected at the surfaces. The tem-
perature on the substrate is then well defined and we may
introduce the surface Helmholtz free-energy density

fs = es − T�s. �2.21�

As the surface boundary condition, we require

C�̂b · �n =
− 1

T
� � fs

�ns
	

T

, �2.22�

where �̂b is the outward surface normal unit vector. In the
literature �1�, this boundary condition is obtained in equilib-
rium with homogeneous T by minimization of the total
Helmholtz �Ginzburg-Landau� free energy,

Ftot =� dr�e − TŜ� +� dafs. �2.23�

We assume the boundary condition �2.22� even in nonequi-
librium, while using Ftot in the bulk region with inhomoge-
neous temperature is not appropriate. The use of Eqs. �2.16�,
�2.19�, and �2.22� now yields the total entropy increasing rate
in our theory �55�,

d

dt
Stot =� dr

�̇v + �̇�

T
+� da

�̂b · � � T + ės

T
, �2.24�

where ės=�es /�t= ��es /�ns���ns /�t�. The first term in the
right-hand side is the bulk entropy production rate, while the
second term is the surface integral of the heat flux from the
solid divided by T or the entropy input from the solid to the
bulk fluid.

SPREADING WITH EVAPORATION AND CONDENSATION … PHYSICAL REVIEW E 82, 021603 �2010�

021603-3



In this paper, we present simulation results with U=0 for
simplicity. In our previous work �49� a large gravity field
was assumed in boiling. In future we should investigate the
effect of the long-range van der Waals interaction in the wet-
ting dynamics.

III. SIMULATION METHOD

In our phase field simulation, we integrated the continuity
equation �2.11�, the momentum equation �2.12�, and the en-
tropy equation �2.16�, not using the energy equation �2.15�,
as in our previous simulation �28�. With this method, if there
is no applied heat flow, temperature and velocity gradients
tend to vanish at long times in the whole space including the
interface region. This numerical stability is achieved because
the heat production rate �̇v+ �̇��0 appears explicitly in the
entropy equation, so that dStot /dt�0 in Eq. �2.24� without
applied heat flow. We then obtain smooth variations of the
temperature and velocity near the film edge �those around the
contact line of an evaporating droplet in Ref. �28��.

It is worth noting that many authors have encountered a
parasitic flow around a curved interface in numerically solv-
ing the hydrodynamic equations in two-phase states �52,59�.
It remains nonvanishing even when the system should tend
to equilibrium without applied heat flow. It is an artificial
flow since its magnitude depends on the discretization
method.

A. Fluid in a cylindrical cell

We suppose a cylindrical cell. Our model fluid is in the
region 0�z�H and 0�r= �x2+y2�1/2�L, where H
=300�x and L=400�x with �x being the simulation mesh
length. The velocity field v vanishes on all the boundaries. In
this axisymmetric geometry, all the variables are assumed to
depend only on z, r, and t. The integration of the dynamic
equations is on a 200�400 lattice in the fluid region. We set
�x=� /2, where � is defined in Eq. �2.8�. We will measure
space in units of �. Then H=150 and L=200 in units of �.

The transport coefficients are proportional to n as

� = � = �0mn, � = kB�0n . �3.1�

These coefficients are larger in liquid than in gas by the
density ratio n� /ng �
5 in our simulation�. The kinematic
viscosity �0=� /mn is a constant. We will measure time in
units of the viscous relaxation time,

�0 = �2/�0 = C/2kBv0�0, �3.2�

on the scale of �. The time mesh size of our simulation is
�t=0.01�0. Away from the criticality, the thermal diffusivity
DT=� /Cp is of order �0 and the Prandtl number Pr=�0 /DT
is of order unity, so �0 is also the thermal relaxation time on
the scale of �. Here, the isobaric specific heat Cp per unit
volume is of order n far from the criticality, while it grows in
its vicinity. With Eq. �3.1�, there arises a dimensionless num-
ber given by

� = m�0
2/��2 = m�2/��0

2. �3.3�

The transport coefficients are proportional to �0��1/2. For
He3, for example, the critical temperature is Tc=3.32 K and,

by setting �=27kBTc /8 from Eq. �2.7�, we have �1/2�
=�0�m /��1/2=2.03�10−8 cm near the gas-liquid critical
point. In this paper we set �=0.06, for which sound waves
are well defined as oscillatory modes for wavelengths longer
than � �see Fig. 6� �49�.

We will measure velocities in units of � /�0=�0 /�. An-
other velocity unit is the capillary velocity 
 /� with � being
the liquid viscosity. At T=0.875Tc, the surface tension 
 is
calculated as


 = 0.082kBTc�/v0 = 0.66pc� . �3.4�

Using Eqs. �3.1� and �3.2� and setting �=0.06 we find 
 /�

0.03� /��0
0.5� /�0. These velocity units are of the same
order, much exceeding the film speed and the gas velocity
near the film edge �discussions regarding Fig. 4�.

The temperature at the top z=H is fixed at TH, while the
sidewall at r=L is thermally insulating or �̂b ·�T=�T /�r=0
at r=L. As the boundary condition of the density, we set
�n /�z=0 on the top plate at z=H and �n /�r=0 on the side-
wall at r=L. On the substrate z=0, it is given by

v0�
�n

�z
= − �1, �3.5�

where �1 arises from the short-range interaction between the
fluid and the solid wall �1,45�. From Eqs. �2.19�–�2.22� this
can be the case if es=const and �s= ��1C /v0��ns+const,
where the constant terms are independent of n. We treat �1
as a parameter independent of T around T=0.875Tc. For ex-
ample, at T=0.875Tc, the contact angle � is � /2 at �1=0,
0.32� at �1=0.05 �28�, and zero at �1=�1c�0.06. The wall
is completely wetted by liquid for �1��1c in equilibrium.

B. Solid substrate

In our previous work, we assumed a constant temperature
at the bottom plate z=0 �28,48,49�. In this paper, we suppose
the presence of a sold wall in the region −Hw�z�0 and 0
�r= �x2+y2�1/2�L, where its thickness is Hw=100�x=50�
=H /3. The temperature in the solid obeys the thermal diffu-
sion equation

Cw
�T

�t
= �w�2T , �3.6�

where Cw is the heat capacity �per unit volume� and �w is the
thermal conductivity of the solid. The temperature T�r ,z , t� is
continuous across the substrate z=0. In our simulation, the
thermal diffusivity in the solid is given by Dw=�w /Cw
=400�0, while the thermal diffusivity of the fluid DT is of
order �0 away from the criticality. Thus, the thermal relax-
ation time in the substrate is Hw

2 /Dw=25�0, which is shorter
than typical spreading times to follow. Because Dw�DT, we
integrated Eq. �3.6� using the implicit Crank-Nicolson
method on a 100�400 lattice.

In this paper, the temperature T at the substrate bottom
z=−Hw is held fixed at a constant Tw. That is, for any r, we
assume
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T�r,− Hw� = Tw. �3.7�

Heating �cooling� of the fluid occurs when Tw is higher
�lower� than the initial fluid temperature T0. There is no heat
flux through the sidewall, so �T /�r=0 at r=L as in the fluid
region. From the energy conservation at the boundary, the
heat flux on the substrate surface is continuous as

��wT��z=−0 = ��T��z=+0, �3.8�

where T�=�T /�z. This holds if there is no appreciable varia-
tion of the surface energy density es. We define the parameter

� = �/�nv0�w� = kB�0/v0�w. �3.9�

Then �T��z=−0=�nsv0�T��z=+0 on the substrate. In this paper,
� is set equal to 0.002 or 0.2. We found that the boundary
temperature at z=0 is nearly isothermal at T=Tw for �
=0.002 but considerably inhomogeneous around the edge for
�=0.2 �see Figs. 4, 5, and 8 below�.

C. Preparation of the initial state and weak adsorption pre-
existing before spreading

To prepare the initial state, we first placed a semispheric
liquid droplet with radius R=40� on the substrate z=0 with
gas surrounding it. Here, we set �1=0 to suppress adsorption
of the fluid to the solid. The temperature and pressure were
T=T0=0.875Tc and p= pcx�T0�=0.573pc on the coexistence
line in the fluid. The liquid and gas densities were those on
the coexistence curve, n�

0=0.579v0
−1 in liquid and ng

0

=0.123v0
−1 in gas. The entropy difference between the two

phases is 2.1kB per particle. The total particle number is N
=2��n�

0−ng
0�R3 /3+�ng

0L2H=1.61�106�3 /v0. The particle
number in the droplet is about 5% of N.

Next, we waited for an equilibration time of 104 with
�1=0. The contact angle � was kept at � /2 and �̂b ·�n=0 on
all the boundary surfaces. As will be shown in the Appendix,
the liquid and gas pressures were slightly changed to 0.608pc
and 0.575pc, respectively. The pressure difference �p
=0.033pc is equal to 2
 /R from the Laplace law, where 
 is
in Eq. �3.4�. As a result, the liquid density was increased to
0.583v0

−1 and the droplet radius was decreased to 38�. Thus,
the fluid nearly reached equilibrium with �=� /2 or without
excess boundary adsorption. After this equilibration we here-
after set t=0 as the origin of the time axis.

At t=0, we changed the wetting parameter �1 in the
boundary condition �3.5� from 0 to 0.061 to realize the com-
plete wetting condition. Before appreciable spreading, weak
adsorption of the fluid has been induced on the substrate in a
short time of order unity �in units of �0�. For small �1 and
away from the contact line, this pre-existing density devia-
tion, written as �n�z�, is of the exponential form

�n�z� = �	�1/v0��e−z/	, �3.10�

in terms of the correlation length 	. Note that homogeneity of
�̂ in Eq. �2.3� yields �	−2−�2 /�z2��n=0 in the linear order,
leading to Eq. �3.10� under Eq. �3.5�. The z integration of
�n�z� is the excess adsorption

�ad = 	2�1/v0� . �3.11�

In the gas at T=0.875Tc, Eq. �2.9� gives 	=1.68�, leading to
�ad=0.24� /v0. We shall see that this pre-existing adsorption
is one order of magnitude smaller than that due to a precur-
sor film �
2.5� /v0 in Fig. 6 below�.

IV. SPREADING ON A COOLED SUBSTRATE

We present numerical results of spreading on a cooler
substrate after the change of �1. In one case, the bottom
temperature Tw at z=−Hw was lowered at t=0 from T0
=0.875Tc to 0.870Tc. In the other case, we kept Tw=T0 even
for t�0. The top temperature at z=H was unchanged from
T0. Subsequently, spreading occurred with an increase in the
liquid fraction due to condensation from gas to a precursor
film. The fluid temperature near the film edge became sig-
nificantly higher than the substrate temperature in these
cases.

However, ahead of the film, a new liquid region �a ring in
our geometry� appeared on the substrate for slightly deeper
cooling �say, for Tw=0.868Tc� or for slightly larger �1 �say,
for �1=0.065�. Such dew nucleation is another problem be-
yond the scope of this paper �60�.

A. Evolution on long and short time scales

We first examine spreading in the cooled case Tw
=0.870Tc�T0 for �=0.002 and 0.2. In the early stage,
strong disturbances are induced around the contact line, as in
the case of droplet heating in the partial wetting condition
�28�. For example, at t=25, the maximum gas velocity is
vg=0.089 and the contact line velocity is 0.14 for �=0.2.
For t�200, a precursor film becomes well defined with re-
duced typical velocities.

Figure 1 displays droplet shapes in later times t�500 for
�=0.002 and 0.2, where the liquid is divided into the droplet
body in the region r�rth and the precursor film in the region
rth�r�re�t�. While re�t� increases in time, rth is nearly
pinned around 52.5�=0.26L. In our simulation, this pinning
occurred for t�200. The film thickness � f also only weakly
depends on time being about 5� for �=0.02 and 0.2 �see the
film profiles in Fig. 6 below�. From the droplet profile
around r=rth the apparent contact angle �ap decreases in time
roughly as t−b with b
0.7 for 20� t�3�103. However,
considerable uncertainties arise in the definitions of rth and
�ap since the droplet height �
rth�ap� approaches � f for our
small droplet. On the other hand, in the previous experiments
on involatile droplets �4–6,8�, the droplet radius R was rela-
tively large such that the droplet volume much exceeded the
volume of a �possible� precursor film. As regard the droplet
body, they confirmed Tanner’s law derived from hydrody-
namics �4� �the droplet radius increases slowly as R
 t with
 
0.1 and the apparent contact angle decreases as �ap

 t−! with !
0.3�.

Figure 2 gives the edge position re�t� and the particle
number in the total liquid region N��t� as functions of time t
for �=0.2 in the cooled case with Tw=0.870Tc and in the
noncooled case with Tw=T0=0.875Tc. In the early stage,
re�t� represents the droplet edge starting with the initial drop-
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let radius �=38�. It exceeds rth=52.5 for t�170. In these
cooled and noncooled cases, re�t� and N��t� grow in time due
to condensation. We calculate N��t� from

N��t� = 2��
0

re�t�

drr�
0

zint�r,t�

dzn�r,t� , �4.1�

where the interface height is at z=zint�r , t� in the range 0
�r�re�t�. zint�r , t� is determined by

n�r,zint,t� = �n�
0 + ng

0�/2, �4.2�

where n�
0=0.579v0

−1 and ng
0=0.123v0

−1 are the densities on the
coexistence curve at T=0.875Tc. In our case, the film is so

thin and there is no unique definition of zint. Then N��t� starts
from the initial number N��0�=0.67�105�3 /v0 and becomes
a few times larger at t
104. In the time region 20� t�3
�103, we roughly obtain

re�t� − re�0� 
 t0.6, N��t� − N��0� 
 t1.1, �4.3�

both for Tw /Tc=0.870 and 0.875. For t�20, drr /dt and the
maximum gas velocity are of order 0.1.

In Fig. 3, we display the heat flux on the substrate Qb�r , t�
for the same runs. From Eq. �3.8� it is defined in terms of the
temperature gradient T�=�T /�z as

Qb�r,t� = − ��wT��z=−0 = − ��T��z=+0. �4.4�

Negative peaks indicate absorption of latent heat from the
fluid to the substrate around the film edge. However, at long
times �t=5�103 in the figure� heat is from the solid to the
fluid in the region of the droplet body r�rth. The amplitude
of Qb�r , t� around the peak is larger for �=0.002 than for
�=0.2, obviously because heat is more quickly transported
for smaller � or for larger �w. Also Qb�r , t� is sensitive to
T0−Tw. For example, in the noncooled case Tw=T0, the
minima of Qb�r , t� became about half of those in Fig. 3 �not
shown here�. In our previous simulation �28�, a positive peak
of Qb�r , t� was found at the contact line of an evaporating
droplet.

In Fig. 4, we present the temperature near the edge at t
=103 in color in the upper panel and the substrate tempera-
ture at z=0 in the lower panel, where �=0.2 and Tw
=0.870Tc�T0. The fluid temperature exhibits a hot spot in
the gas side produced by latent heat. The substrate tempera-
ture is maximum at the film edge. Such a temperature varia-
tion in the solid should be measurable �31�. In this run, the
peak height of the hot spot is �Tp−Tw� /Tc=0.01. At t=103,
the maximum gas velocity is vg=0.014 around the hot spot,
while the mean velocity in the film near the edge is of order
0.01. The corresponding Reynolds number vg� f /�0 in the gas
is small �
0.07 here�. Surprisingly, the fastest velocity is the
edge speed dre /dt=0.04 in this case. It is possible when the
film expands due to condensation near the film edge. On the
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FIG. 1. �Color online� Shapes of an axisymmetric small droplet
spreading on a cooler substrate with Tw=0.870Tc at various times
�t�500� for �=0.002 �top� and 0.2 �middle� in the r-z plane. The
system temperature was initially T0=0.875Tc at t=0. The boundary
position between the main body of the droplet and the precursor
film is fixed at r=rth=52.5� at these times for �=0.02 and 0.2. The
edge position re�t� of the film increases with time as illustrated in
the bottom plates.
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other hand, in the noncooled case Tw=T0, the peak height
was reduced to Tp−T0=0.007Tc and vg to 0.008 at t=103.

In Fig. 5, we show time evolution of the temperature
maxima, denoted by Tp and Tsp, in the fluid and on the sub-
strate at z=0, respectively, in the cooled case Tw=0.870Tc
for �=0.2 and 0.002. The maxima are at the contact line
right after the cooling and near the film edge after the pre-
cursor film formation. The substrate temperature also exhib-
its a smaller peak for �=0.2, but it becomes nearly homo-
geneous for �=0.002.

In Fig. 6, we display time evolution of the pressure and
the temperature at the position �z ,r�= �0.48H ,0.5L� in the

gas region far from the substrate in the cooled case Tw
=0.870Tc with �=0.2. In the inset, their initial deviations
originate from a lower-pressure sound pulse emitted from the
adsorption layer in Eq. �3.10�. This acoustic process is an
example of the piston effect �61,62�. In the present case, the
thermal diffusion layer due to cooling of the substrate gives
rise to a smaller effect. The emitted pulse traverses the cell
on the acoustic time H /cg
50 and is reflected at the top
plate, where cg
4 is the sound velocity in the gas. The first
deep minima of T below Tw and that of p at t
25 are due to
its first passage. Here, the adiabatic relation �T
= ��T /�p�s�p is well satisfied for the deviations �T=T−T0
and �p= p− p0. The adiabatic coefficient ��T /�p�s is equal to
11Tc / pc in the gas and is larger than that in the liquid by one
order of magnitude. On long time scales, Fig. 6 shows that
the pressure gradually decreases with progress of condensa-
tion, while the temperature increases for 200� t�1500,
slowly decreases for 1500� t�3000, and again increases for
longer t. The gas temperature in the middle region is slightly
higher than Tw by 0.002Tc at t=9�103. We note that the gas
temperature is influenced by a gas flow from the droplet and
behaves in a complicated manner.

B. Profiles of density, temperature, and pressure

Here, we introduce the normal pressure p̃ by

p̃ = �
ij

�̂i�̂ j
ij = p − CT�n�2n − ��n�2/2� , �4.5�

where 
ij is the reversible stress tensor in Eq. �2.13�, p is the
van der Waals pressure in Eq. �2.6�, and �̂= ��̂i�
= ��in / ��n�� is the unit vector along the density gradient �n.
Obviously, p̃� p in the bulk region. In equilibrium, p̃ is in-
dependent of space and is equal to the saturation pressure
pcx�T� across a planar interface, while its deviation from
pcx�T� is of order R−1 across a spherical interface with radius
R−1 �see the Appendix�. Even in nonequilibrium, we found
that inhomogeneity of p̃ around an interface remains rela-
tively weak �smaller than that of p by one order of magni-
tude�.

In Fig. 7, we show the profiles of the density n, the tem-
perature T, and the normal pressure p̃ along the density gra-
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ted, which is maximum at the edge position due to a finite thermal
conductivity of the solid.
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dient at t=2�103 for �=0.2 and Tw=0.870Tc. In the left
panels of Fig. 7 for r=0.125L�rth, we can see weak adsorp-
tion near the wall in Eq. �3.10�, a well-defined interface at
z
20, and a small negative temperature gradient within the
droplet body. For this r, a heat flow is weakly from the solid
to the fluid. This is because the gas region above the droplet
was initially cooled due to the piston effect, as Fig. 6 indi-
cates. On the other hand, in the right panels for r=0.55L
�rth, n decreases from a liquid density near the wall to a gas
density without a region of a flat density and T exhibits a
peak. In this case, the hot peak is located at r=0.59L. The
temperature variation around the film is larger than that in
the droplet body by one order of magnitude. Furthermore,
Fig. 8 gives a bird’s eye view of the temperature near the
edge from the same run, which corresponds to the middle
right panel in Fig. 7. Here, the temperature inhomogeneity in
the solid can also be seen.

It is of interest how the normal pressure and the tempera-
ture �p̃ ,T� at the interface is close to the coexistence line
(pcx�T� ,T) in the p-T phase diagram. We define

h =
T − T0

Tc
− � �T

�p
	

cx

p̃ − p0

Tc
, �4.6�

where the derivative ��T /�p�cx along the coexistence line is
equal to 0.38Tc / pc at T=0.875Tc. The upper panel of Fig. 9
displays h around the film at t=103, while the lower panel of

Fig. 9 gives h along the surface z=zint at four times for �
=0.2 and 0.002. This quantity represents the distance from
the coexistence line p= pcx�T� in the p-T phase diagram. In
the bulk region, h is negative in stable liquid and metastable
gas, while h is positive in stable gas and metastable liquid.
We can see that h nearly vanishes in the droplet body in the
region r�rth and increases in the film rth�r�re�t�, but h
remains less than 10−2 even at the edge. Note that the
Laplace pressure contribution to h is ��T /�p�cx2
 /TcR,
which is of order 0.01 in the droplet body r�rth at t=103.

C. Condensation rate and gas velocity

In our previous simulation �28�, evaporation of a thick
liquid droplet mostly takes place in the vicinity of the contact
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line in the partial wetting condition. Here, we examine the
space dependence of the condensation rate of a thin film in
the complete wetting condition.

We introduce the number flux J�r , t� from gas to liquid
along �̂= ��n�−1�n through the interface,

J�r,t� = n�v − vint� · �̂ , �4.7�

where vint is the interface velocity. If J is regarded as a
function of the coordinate along the normal direction �̂, it is
continuous through the interface from the number conserva-
tion, while n and v · �̂ change discontinuously. Thus, we may
well determine J on the interface. For J�0, it represents the
local condensation rate. For J�0, �J� represents the local
evaporation rate. In Fig. 10, we plot J�r , t� vs r /L in the
region 0�r�re�t� at three times for �=0.002 and 0.2 in the
cooled case Tw=0.870Tc. We recognize that J�r , t� steeply
increases in the precursor film and is maximum at the edge.
Moreover, it becomes negative in the body part r�rth at t
=3�103, where evaporation occurs.

The total condensation rate Wtot�t� is the surface integral
of J�r , t� on all the surface. The surface area in the range
�r ,r+dr� is da=2�drr /sin �, where � is the angle between �̂
and the r axis. Thus,

Wtot�t� = 2��
0

re�t�

drrJ�r,t�/sin � . �4.8�

The particle number in the liquid region N��t� in Eq. �4.1�
increases in time as

d

dt
N��t� = Wtot�t� . �4.9�

We also define the condensation rate in the film region,

Wfilm�t� = 2��
rth

re�t�

drrJ�r,t�/sin � , �4.10�

where sin ��1. In this integral the vicinity of the edge gives
rise to a main contribution. In fact, the contribution from the
region re−16��r�re is about 50% of the total contribution
from the region rth�r�re. Therefore, in terms of the gas

velocity vg and the gas density ng around the edge, we esti-
mate Wfilm�t� as

Wfilm�t� 
 2�rengvg�c, �4.11�

where �c is the width of the condensation area estimated to
be about 30�.

We introduce the number flux from the droplet body to
the film at r=rth by

Jflow�t� = 2�rth�
0

zth

dzn�rth,z,t�vr�rth,z,t� , �4.12�

where vr�r ,z , t�=vxx /r+vyy /r is the velocity in the plane
within the film. In terms of the average density in the film n̄�

and the average fluid velocity v̄� at r=rth, we estimate

Jflow�t� 
 2�rthn̄�v̄�. �4.13�

More generally, we may introduce the flux

Jf�r,t� = 2�r�
0

zth

dzn�r,z,t�vr�r,z,t� , �4.14�

for r�rth with zth being the film thickness � f. In the presence
of condensation onto the film, Jf�r , t� increases from
Jf�rth , t�=Jflow�t� at r=rth with increasing r and reaches its
maximum Jf�re�t� , t� at r=re�t�. For �=0.2, the ratio
Jf(re�t� , t) /Jf�rth , t� was 1.1 at t=103 and 2.4 at t=4�103.

We consider the particle number in the droplet body Nb�t�
and that in the precursor film Nfilm�t�. Here, Nb�t� is the in-
tegral of 2�rJ�r , t� /sin � in the region r�rth and Nfilm�t� in
the region rth�r�re. Their sum N��t�=Nb�t�+Nfilm�t� in Eq.
�4.8� has been calculated in Fig. 2. In terms of Wtot�t�,
Wfilm�t�, and Jflow�t�, they change in time as

d

dt
Nb�t� = Wtot�t� − Wfilm�t� − Jflow�t� , �4.15�

d

dt
Nfilm�t� = Wfilm�t� + Jflow�t� . �4.16�

Using the edge velocity ṙe=dre /dt, we also obtain

d

dt
Nfilm�t� = 2�reṙen̄�� f , �4.17�

since the film thickness is fixed in our case.
In Fig. 11, we plot Wtot�t�, Wfilm�t�, and Jflow�t� vs t for

�=0.002 and 0.2. In an early stage �t�1.5�103 for �
=0.002 and t�2.6�103 for �=0.2�, Wtot�t� is larger than
Wfilm�t� and condensation occurs on all the interfaces. After-
ward, the reverse relation Wtot�t��Wfilm�t� holds, where
evaporation weakly occurs in the droplet body r�rth. More-
over, Wfilm�t� exceeds Jflow�t� for t�103 for these two values
of �. Therefore, condensation near the film edge is the main
mechanism of the precursor film growth except in the early
stage �see the discussion below Eq. �4.10��, as speculated by
Hardy �1,2�. In passing, let us estimate Wfilm�t� and Jflow�t�
using Eqs. �4.11� and �4.13�. For example, at t=103 �or 4
�103� in the case �=0.2, the edge velocity is ṙe=0.04 �or
0.012�, the gas velocity near the edge is vg=0.012 �or
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0.0064�, and the fluid velocity at r=rth is v̄�=0.015 �or
0.005�. These values then yield Wfilm�t�
Jflow�t�
13 at t
=103 and Wfilm�t�
3Jflow�t�
10 at t=4�103, in agreement
with their curves in the right panel of Fig. 11.

In the left panel of Fig. 12, we plot the particle number in
the droplet body Nb�t�=2��0

rthdrrJ�r , t� /sin � for �=0.2 in
the cooled case. Here, the upper bound rth is longer than the
real droplet radius on the substrate at short times t�200.
Because of this definition, a small peak of Nb�t� arises at t

200 in Fig. 12. We confirmed that the numerical Nb�t� is
consistent with the time integration of Eq. �4.15�,

Nb�t� − Nb�0� = Sbody�t� − Sflow�t� . �4.18�

In the right-hand side, the first term is the increase in the
particle number due to condensation and evaporation ex-
pressed in the time integral

Sbody�t� = �
0

t

dt��Wtot�t�� − Wfilm�t��� . �4.19�

The minims of the second term is the decrease in the particle
number due to flow from the body into the film,

Sflow�t� = �
0

t

dt�Jflow�t�� . �4.20�

In the right panel of Fig. 12, Sbody�t� and Sflow�t� are dis-
played for �=0.2 in the cooled case. We notice that Sflow�t�

is considerably larger than Sbody�t� and the droplet body
shrinks mainly due to the flow from the body to the film,
leading to Nb�0�−Nb�t��Sflow�t�. Since Sbody�t� changes its
sign, condensation dominates evaporation for t�6�103 and
vice versa at later times on the droplet body shrinkage.

We finally derive an approximate expression for the gas
velocity vg near the edge. The heat flux is of order ���Tp
−Tw� /� f there, where Tp is the peak temperature and �� is the
liquid thermal conductivity. It balances with the convective
latent heat flux 
ngT0�svg in the gas, where ng is the gas
density and �s is the entropy difference per particle. There-
fore,

vg 
 ���Tp − Tw�/�� fngT0�s� 
 �Tp − Tw�n̄��0/�T0ng� f� ,

�4.21�

where we set ��=kB�0n̄� and �s �=2.1kB here� in the second
line. Let us check the validity of the above estimate in our
simulation. �i� In the upper plate of Fig. 4 at t=103 we have
vg=0.014, while the second line of Eq. �4.21� becomes a
close value of 0.012 with � f /�
5 and n̄� /ng
5. �ii� From
Eq. �4.21� the combination vg / �Tp−Tw� should be a constant
independent of time. In the cooled case Tw=0.870Tc with
�=0.2, our data yield vgTc / �Tp−Tw�=2.48, 1.49, 1.64, and
1.60 for t=200, 103, 2�103, and 4�103, respectively, so it
is roughly equal to 1.6 in the late stage.

V. SPREADING AND EVAPORATION ON A HEATED
SUBSTRATE

For �=0.2, we next present simulation results of a heated
liquid droplet in the complete wetting condition, where Tw is
increased above T0=0.875Tc at t=0. The other parameter
values are the same as those in the previous section. The
preparation method of a droplet is unchanged. Then a pre-
cursor film develops in an early stage �at least for small Tw
−T0� because of the complete wetting condition at �1
=0.061 �see Eq. �3.5��. A new aspect is that evaporation
dominates over condensation with increasing Tw−T0�0.
The experiment by Guéna et al. �22� corresponds to this
situation �see Sec. I�.

The evaporation rate −J �for negative J� from our simu-
lation is very different from the phenomenological one
��re�t�2−r2�−1/2 �24–26� as in Figs. 14 and 15 below. Also
see Sec. I and Ref. �35� for this aspect.

A. Time evolution

In Fig. 13, we show the edge position re�t� and the par-
ticle number in the liquid N��t� as functions of t for three
cases Tw=0.8855Tc �Fig. 13�a��, Tw=0.888Tc �Fig. 13�b��,
and Tw=0.890Tc �Fig. 13�c��. First, Fig. 13�a� is a special
case, where the overall balance between condensation and
evaporation is achieved at long times. That is, in Fig. 13�a�,
re�t� and N��t� tend to constants at long times and a steady
thin pancakelike film is realized with radius 
0.5L and
thickness 
4�. Second, for higher Tw, evaporation domi-
nates over condensation and the liquid region eventually dis-
appears at some time t0. In other words, if Tw−T0 exceeds a
critical value �=0.0105Tc here�, a liquid droplet has a finite
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FIG. 11. �Color online� Total condensation rate Wtot�t� �green�,
condensation rate onto the film Wfilm�t� �red�, and flow from the
droplet body to the film Jflow�t� �blue� in units of �3 /v0�0 as func-
tions of time. The time ranges are �3�102 ,7�103� for �=0.002
�left� and �3.3�102 ,7�103� for �=0.2 �right�.
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lifetime t0 even in the complete wetting condition. The life-
time t0 grows strongly as T0−Tw approaches the critical
value. In our examples, t0=1.07�105 for Tw−T0=0.018Tc in
Fig. 13�b�, while t0=1.12�104 for Tw−T0=0.020Tc in Fig.
13�c�. As t approaches t0, re�t� may be fitted to the power-law
form

re�t� 
 �t0 − t�c, �5.1�

where c�0.30 in Fig. 13�b� and c�0.43 in Fig. 13�c�. In our
previous simulation of droplet evaporation in the partial wet-
ting condition �28�, this behavior was obtained with c
=0.42. In experiments �22,24–27�, macroscopic droplets
evaporated in air obeying the power law with the classical
exponent c=0.5.

B. Evaporation rate and temperature profile

In Fig. 14, we show the mass flux through the interface
J�r , t� defined in Eq. �4.7� in the weakly heated case �a� Tw
=0.8855Tc. Its negativity implies evaporation. In the region
far from the edge, evaporation is marked in transient states
�t�4�103�, but it tends to vanish at long times. We can also
see the region of positive J with width of order 10 near the
edge �re−10�r�re�, where the film is still flat and the angle

� in Eq. �4.8� is nearly � /2. In Fig. 14, however, we do not
show J just at the edge �r�re�t� and 0�z�� f�, where �
changes from � /2 to zero in the z direction and evaporation
occurs �J�0�. As a balance of condensation and evaporation
in these two regions, the total condensation rate Wtot in Eq.
�4.8� tends to vanish at long times, while there is no velocity
field in the region r�re−10. In the inset of Fig. 14, the
velocity field around the edge is displayed at t=2�103,
where the maximum gas velocity is vg=1.1�10−3� /�0.

In Fig. 15, we show J�r , t� at several times in the highest
heating case �c� Tw=0.890Tc. In the whole surface, J is nega-
tive and evaporation is taking place. For t�4�104 evapo-
ration is strongest at the film center, in sharp contrast to the
case of a thick evaporating droplet �28�. At long times �t
=8�103 here�, however, it becomes weakest at the film cen-
ter. Figure 16 is produced by the same run. It gives a bird’s
eye view of the temperature in the upper panel and a snap-
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shot of the velocity field in the vicinity of the film edge at
t=103 in the lower panel. A similar bird’s eye view of the
temperature was presented for a thick evaporating droplet
�28�. Remarkably, we can see a very steep temperature gra-
dient within the film, which is much larger than in the gas,
leading to a strong heat flux from the solid to the film. In this
manner, evaporation is induced all over the surface and is
strongest at the film center in the early stage. It is remarkable
that the temperature gradient nearly vanishes in the gas re-
gion above the film away from the edge, where heat is trans-
ported by a gas flow. We also notice a significant temperature
inhomogeneity in the solid part in contact with the film.

VI. SUMMARY AND REMARKS

For one-component fluids we have examined spreading of
a small droplet on a smooth substrate in the complete wetting
condition in the axisymmetric geometry. In the dynamic van
der Waals theory �48,49�, we have integrated the entropy
equation in Eq. �2.16� together with the continuity and mo-
mentum equations. On the boundary walls, the velocity van-
ishes and the density derivative in the normal direction is a
constant as in Eq. �3.5�. This method may remove artificial
flows around an interface �59�. In our phase field scheme, we
need not introduce any interface boundary conditions. The
condensation rate on the interface is a result and not a pre-
requisite of the calculation. We have also assumed that the
substrate wall has a finite thickness Hw and the solid tem-
perature obeys the thermal diffusion equation, whereas an
isothermal substrate is usually assumed in the literature. The
temperature Tw at the solid bottom z=−Hw is a new control

parameter in our simulation. Cooling �heating� the fluid is
realized by setting Tw lower �higher� than the initial fluid
temperature T0. We give salient results in our simulation.

�i� In the cooled and noncooled cases with Tw�T0, a
precursor film with a constant thickness has appeared ahead
of the droplet body. Here, the volume of the liquid region has
increased in time due to condensation on the film as in Fig.
2, while that of the droplet body has decreased in time
mainly due to flow from the body into the film as in Fig. 12.
In a very early stage, the piston effect comes into play due to
sound propagation �61,62�. At long times, the condensation
rate has become localized near the film edge and the film has
expanded due to condensation. As a result, a hot spot has
appeared near the film edge because of the latent heat re-
leased.

�ii� At a critical value of Tw slightly higher than T0, we
have realized a steady-state thin liquid film, where conden-
sation and evaporation are localized and balanced at the
edge. For higher Tw, evaporation has dominated and the liq-
uid region has disappeared eventually. This lifetime de-
creases with increasing Tw−T0. For a thin film, evaporation
has appeared all over the film surface upon heating. In our
previous simulation for one-component fluids �28�, on the
other hand, evaporation of a thick droplet was mostly local-
ized near the contact line in the partial wetting condition.

We give some critical remarks. �1� Our results cannot be
directly compared with most of the previous experimental
results on large involatile droplets such as Tanner’s law. For
our small droplet, the volume of the precursor film has ex-
ceeded the initial droplet volume in relatively short times �

103�0�. We propose future experiments using volatile fluids
to investigate a hot spot, for example. �2� If the mesh length
�x=� /2 is a few Å, our system length is on the order of
several ten manometers and the particle number treated is of
order 106 �see Sec. III C�. Our continuum description should
be imprecise on the angstrom scale. Thus, examination of
our results by large-scale molecular-dynamics simulations
should be informative. We should also investigate how our
numerical results can be used or modified for much larger
droplet sizes. �3� In future work, we should examine the role
of the long-range van der Waals interaction in the wetting
dynamics. As is well known, it crucially influences the film
thickness �1�. �4� We should also include the slip effect at the
contact line in our scheme �57,58�. �5� We should study the
two-phase hydrodynamics in fluid mixtures, where a Ma-
rangoni flow decisively governs the dynamics even at small
solute concentrations �25,29,34�.
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APPENDIX: EQUILIBRIUM TWO-PHASE COEXISTENCE

First we consider a planar interface at z=0 separating gas
and liquid in equilibrium with a homogeneous T below Tc.
Here, we may start with the Helmholtz free energy in Eq.
�2.23� �54�. All the quantities change along the z axis. From
the homogeneity of the generalized chemical �̂ in Eq. �2.3�
we obtain the equation for the interface density profile n
=nin�z� as

��nin� − CTnin� = �cx, �A1�

where nin� =d2nin /dz2 and �cx is the equilibrium chemical po-
tential in two-phase coexistence. We assume that ng=nin�"�
is the gas density and n�=nin�−"� is the liquid density in
equilibrium. The van der Waals pressure p= p(nin�z�) satisfies

p�nin� − CT�ninnin� − �nin� �2/2� = pcx, �A2�

where nin� =dnin /dz and pcx is the equilibrium coexistence
pressure. If differentiated with respect to z, the left-hand side
of Eq. �A2� vanishes from Eq. �A1�, ensuring its homogene-
ity. Notice that the left-hand side of Eq. �A2� is equal to p̃ in
Eq. �4.5� or the zz component of the stress tensor. The van
der Waals pressure p�nin� itself exhibits a large variation of
order 
 /	 in the interface region. In fact, Eq. �A2� gives

� dz�p�nin� − pcx� = − 3
/2. �A3�

If use is made of Eq. �A1�, this relation readily follows from
the usual expressions for the surface tension �54�,


 =� dz�f − �cxn + pcx + CT�nin�2/2� =� dzCT�nin� �2,

�A4�

where f =n�− p is the Helmholtz free-energy density.
Second, we consider a spherical liquid droplet with radius

R in gas in equilibrium. The radius R is much longer than the
interface thickness 	. All the quantities depend only on the
distance r from the droplet center. The homogeneity of �̂
gives the equation of the density n�r� as

��n� − CT�n� + 2n�/r� = �cx + ��cx, �A5�

where n�=dn /dr, n�=d2n /dr2, and ��cx is the correction
arising from the curvature. For large R we set

n�r� = nin�r − R� + �n�r� , �A6�

where �n�R−1. We may replace 2n� /r with 2n� /R in Eq.
�A5�. To linear order in the deviations we find


��nin�� − CT
d2

dr2��n =
2CT

R
nin� + ��cx, �A7�

where ��nin��= ��� /�n�T=1 /n2KT at n=nin with KT being
the compressibility. We multiply Eq. �A7� by nin� and inte-
grate both hand sides with respect to r across the interface to
obtain

��cx�n = �p = − 2
/R , �A8�

where �n=ng−n� is the density difference. Here, we have
used Eq. �A4� and the relation ��nin��nin� −CTd3nin /dz3=0.
Thus, we have calculated the pressure difference between the
two phases �p and the chemical potential deviation ��cx to
linear order in R−1. In the bulk gas and liquid regions far
from the interface, �n tends to ��n�g in gas and ��n�� in
liquid. From Eq. �A7� we obtain these bulk density devia-
tions,

���ng���n�g = ���n����n�� = − 2
/R�n . �A9�

The bulk pressure deviations are

��p�g = − 2ng
/R�n, ��p�� = − 2n�
/R�n , �A10�

in gas and in liquid, respectively. The deviation of the normal
pressure p̃ in Eq. �4.5� from pcx may also be expanded in
powers of R−1. To linear order we obtain

�p̃ =
2
nin

R�n
+ CT� 2

R
ninnin� − nin� �n + nin� �n�	 . �A11�

In Fig. 7, the interface variation of �p̃ is smaller than that of
�p= p− pcx�

 /	� by one order of magnitude.
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