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Equilibrium properties of dilute binary fluid mixtures are studied in two-phase states on the basis of
a Helmholtz free energy including the gradient free energy. The solute partitioning between gas and
liquid �Henry’s law� and the surface tension change �� are discussed. A derivation of the Gibbs law
��=−T� is given with � being the surface adsorption. Calculated quantities include the derivatives
dTc /dX and dpc /dX of the critical temperature and pressure with respect to the solute molar fraction
X and the temperature-derivative ��� /�T�cx,p of the surface tension at fixed pressure p on the
coexistence surface. Here ��� /�T�cx,p can be both positive and negative, depending on the solute
molecular size and the solute-solvent interaction, and diverges on the azeptropic line. Explicit
expressions are given for all these quantities in the van der Waals model. © 2009 American Institute
of Physics. �DOI: 10.1063/1.3089709�

I. INTRODUCTION

Many problems in physics and engineering involve di-
lute solutions. In one-phase states, the critical behavior of
dilute fluid mixtures have been studied extensively,1–3 where
crossover occurs from pure fluid behavior to binary-mixture
behavior on approaching the critical line. In two-phase
states, it has been of great interest how a solute is partitioned
between gas and liquid and how it is adsorbed in or repelled
from the interface region.4–7

In the dilute limit, the solute-solute interaction may be
neglected for nonelectrolytes. Nevertheless, the two-phase
behavior is still highly nontrivial, depending sensitively on
the detail of the solute-solvent interaction. In particular, the
surface tension change �� due to a solute is related to the
excess solute adsorption.8 To understand such effects, we
will present a simple Ginzburg–Landau theory of dilute mix-
tures including the gradient free energy.3 As is well known,9

van der Waals originally constructed such a theory for pure
fluids to describe a gas-liquid interface and to calculate the
surface tension �. For binary mixtures it is moreover pos-
sible to calculate the solute density profile around an inter-
face, which should satisfy the Gibbs adsorption law. In this
approach solute partitioning between the two phases may be
examined systematically.

In fluid hydrodynamics involving a gas-liquid interface,
it is crucial how the surface tension varies on the surface as
a function of ambient temperature, concentration, and pres-
sure, since its variation induces a Marangoni flow.10,11 How-
ever, the present author is not aware of any fundamental
theory on the surface variation of � in fluid mixtures in non-
equilibrium. Hence we will also calculate the surface tension
derivative ��� /�T�cx,p with respect to the temperature T at
fixed pressure p in two-phase coexistence.12

In Sec. II, we will present a Ginzburg–Landau model to

calculate how the coexistence surface and the critical line are
formed with addition of the second component. Mean-field
critical behavior of dilute mixtures will be discussed, where
the so-called Krichevskii parameter4–7,13–15 will be of crucial
relevance. On the basis of the Gibbs adsorption law to be
derived in Appendix A, general expressions for the surface
tension variations on the coexistence surface will be given.
In Sec. III, use will be made of the van der Waals free energy
of dilute mixtures6,16 supplemented with the gradient free
energy. It will give explicit expressions for all the physical
quantities discussed in Sec. II, in terms of two dimensionless
parameters characterizing the solute-solvent interaction. In
Appendix B, correlation-function expressions for thermody-
namic derivatives including that of the Krichevskii parameter
will be given.3,17

II. THEORETICAL BACKGROUND

A. Ginzburg–Landau theory

This paper treats dilute nonelectrolyte binary mixtures
with short-range interactions undergoing the gas-liquid tran-
sition. The number densities of the two components are writ-
ten as n1 and n2 with n2�n1, which are coarse-grained vari-
ables changing smoothly in space. A Ginzburg–Landau free
theory is used to describe two-phase coexistence. A number
of authors calculated the surface tension of mixtures by com-
bining an equation of state and the gradient theory.18–20

Hereafter the Boltzmann constant will be set equal to
unity. The free energy functional F=F�n1 ,n2� depends on n1

and n2 as

F =� dr� f +
T

2 	
i,j=1,2

Dij � ni · �nj
 . �2.1�

The first term f = f�n1 ,n2 ,T� in the brackets is the Helmholtz
free energy density dependent on the densities and the tem-
perature T. The gradient terms are needed to account for a
free energy increase due to density inhomogeneity. The co-a�Electronic mail: onuki@scphys.kyoto-u.ac.jp.
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efficients D11, D12=D21, and D22 are assumed to be constants
independent of the densities. In the dilute case n2�n1, the
following form is assumed:

f = f0�n1,T� + Tn2�ln�n2�2
3� − 1 + ��n1,T�� . �2.2�

Here the van der Waals attractive interactions among the
molecules of the species 2��n2

2� are neglected. The f0�n1 ,T�
is the Helmholtz free energy density of the one-component
�pure� fluid of the species 1 and �2=��2	 /m2T�1/2 �� being
the Planck constant� is the de Broglie length of the species 2.
The term Tn2� arises from the solute-solvent interaction,
where �=��n1 ,T� is independent of n2 �see Sec. II B for its
van der Waals expression�.

For the free energy density f in Eq. �2.2� the chemical
potentials of the two components �without the gradient con-
tributions� are expressed as


1 =
� f

�n1
= 
0�n1,T� + Tn2���n1,T� , �2.3�


2 =
� f

�n2
= T ln�n2�2

3� + T��n1,T� , �2.4�

where 
0=�f0 /�n1 is the chemical potential of the pure
fluid and ��=�� /�n1 in 
1. Note that 
2 tends to −�
logarithmically in the low density limit n2→0. The pressure
p=n1
1+n2
2− f is expressed as

p = n1
0 − f0 + Tn2�1 + n1��� , �2.5�

where the last term is the solute correction. For the free
energy functional F in Eq. �2.1� the generalized chemical
potentials including the gradient contributions read


̂i =
�F

�ni
= 
i − T 	

j=1,2
Dij�

2nj �i = 1, 2� , �2.6�

which are homogeneous in space in equilibrium. The usual
chemical potentials 
1 and 
2 deviate from 
̂1 and 
̂2 in the
interface region. Originally, van der Waals set up the follow-
ing interface equation for pure fluids:9


0�n,T� − TD11n� = 
cx
0 �T� , �2.7�

where 
cx
0 is the chemical potential on the coexistence curve

p= pcx
0 �T� of the pure fluid. The density n�z� changes along

the z axis and n�=d2n /dz2. Our equations in Eq. �2.6� lead to
the van der Waals interface Eq. �2.7� for n1=n�z� and n2=0.

In this paper a small parameter 
 is defined as


 = �2
−3e
̂2/T, �2.8�

which has the dimension of density. The solute density n2 is
expressed as

n2 = 
 exp�− ��n1,T� + D12�
2n1 + D22�

2n2�

� 
 exp�− ��n1,T� + D12�
2n1� . �2.9�

The fugacity of solute f2=exp�
̂2 /T�=�2
3
 is usually used to

represent the degree of solute doping. The term proportional
to �2n2 in the first line is omitted in the second line. In the
second line n2 is expressed in terms of n1 and �2n1. It fol-
lows n2=
 exp�−��n1 ,T�� in the homogeneous bulk region.

In our theory expansions up to first order in 
 or f2 are
performed. On the other hand, Leung and Griffiths1 used
another parameter 
LG�1 / �1+A0 exp�
1 /T−
2 /T�� in or-
der to describe the overall thermodynamics of binary mix-
tures along the critical line �0�X�1�, where A0 is an ap-
propriate constant.

Equilibrium states may be characterized by the field
variables p, T, and 
. As a functional of n1 parametrized by
p, T, and 
, the grand potential � is defined as

� = F −� dr�
̂1n1 + 
̂2n2� . �2.10�

In the dilute case 
̂2 may be removed with the aid of Eqs.
�2.4� and �2.6�, leading to

� =� dr� f0 − 
̂1n1 +
T

2
D11
�n1
2 − Tn2
 , �2.11�

where the gradient terms proportional to D12 cancel to
vanish and n2 depends on n1 as in the second line of
Eq. �2.9�. Then �=���n1� ,T ,
� is minimized in equilibrium
as a functional of n1. In fact �� /�n1=0 holds from
�n2=−n2���−D12�

2��n1 at fixed 
.

B. Two-phase coexistence

Let a planar interface separate gas and liquid regions.
The bulk densities of the two components far from the inter-
face are written as n1�, n1g, n2�, and n2g. The subscripts � and
g stand for liquid and gas, respectively. This paper treats the
dilute regime,

n2g � n1g, n2� � n1�, �2.12�

in the two phases. Hereafter thermodynamic relations in this
case are given. For a noncondensable gas as a solute, another
typical situation is given by n1g�n2g�n1� far below the
solvent criticality.

As a reference state, we consider the two-phase state of
the pure fluid composed of the first component at the same
temperature T below Tc0, where n1 is equal to n�0 in liquid
and ng0 in gas. The chemical potential and pressure in the
pure fluid are written as 
cx

0 and pcx
0 , respectively. With ad-

dition of solute, Eq. �2.9� yields the bulk solute densities,

n2� = 
e−��, n2g = 
e−�g, �2.13�

where ��=��n�0 ,T� with � standing for � or g. Since the
pressure is given by the common value p= pcx in the two
phases, Eq. �2.5� yields the coexisting solvent densities
n1� ��=� or g� as

n1�

n�0
− 1 = KT���pcx − Tn2��1 + n�0���n�0��� , �2.14�

where KT� is the isothermal compressibility
KT= ��n /�p�T /n of the pure fluid for �=� or g and
�pcx= pcx− pcx

0 is the deviation of the coexisting pressure.
Furthermore, Eq. �2.3� yields

�
1cx = 
1cx − 
cx
0 = ��pcx − Tn2��/n�0 �2.15�

for the deviation of the solvent chemical potential in two-
phase coexistence. This holds both for �=� and g, so
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�pcx�1 /n�0−1 /ng0�−T�n2� /n�0−n2g /ng0�=0. Thus,

�pcx = T�X/�v , �2.16�

�
1cx = T�n2/�n , �2.17�

where �n=n�0−ng0 and �v=1 /ng0−1 /n�0 are the differ-
ences of the density and the volume �per particle� between
gas and liquid in the pure fluid, respectively, �taken to be
positive�. The differences in the solute density and molar
fraction are written as

�n2 = n2g − n2� = �e−�g − e−���
 , �2.18�

�X =
n2g

ng0
−

n2�

n�0
= � e−�g

ng0
−

e−��

n�0
�
 , �2.19�

which are both proportional to 
 from Eq. �2.13�.
For infinitesimal variations of 
1, 
2, T, and p, the

Gibbs–Duhem relation generally holds in the form

d
1 = − Xd� − sdT + vdp , �2.20�

where �=
2−
1 is the chemical potential difference, s is the
entropy per particle, and v=1 / �n1+n2� is the volume per
particle. In particular, for variations on the coexistence sur-
face in the p-T-� space, we obtain

�Xd� = − �sdT + �vdp , �2.21�

where �s and �v may be taken as the entropy difference in
the pure fluid. Here d��T
−1d
 in the dilute case, so in the
mixture case 
�0 we have

� �T

�

�

cx,p
= − T

�X


�s
, � �p

�

�

cx,T
= T

�X


�v
, �2.22�

where ��¯ /�¯�cx,p and ��¯ /�¯�cx,T are the derivatives
on the coexistence surface at fixed p and T, respectively, and
the right hand sides of Eq. �2.22� are independent of 
 since
X�
. Obviously, �pcx in Eq. �2.16� follows from integration
of ��p /�
�cx,T in Eq. �2.22� with respect to 
 from the refer-
ence pure fluid state at fixed T. To derive �
1cx in Eq. �2.17�
we integrate Eq. �2.20� with respect to 
 at fixed T to obtain
Eq. �2.15�. Here note the relation �−�

� Xd��T�0

d
X /
=TX,

where X /
 is independent of 
. In the same manner, the
temperature change �Tcx=Tcx�p ,
�−Tcx

0 �p� at fixed p �below
the critical pressure pc0� on the coexistence surface reads

�Tcx = − T�X/�s , �2.23�

which is proportional to 
.
It is convenient to introduce the partition coefficient of

solute K as the ratio of the solute molar fraction in gas
Xg=n2g /ng0 and that in liquid X�=n2� /n�0.4,5 Equation �2.13�
gives

K =
Xg

X�

=
n�0

ng0
exp��� − �g� . �2.24�

Then �X= �1−K−1�Xg= �K−1�X�. The azeotropic line on the
coexistence surface is determined by K=1, on which the two
phases have the same composition. If the gas region is dilute,
Xg is nearly equal to the partial pressure of the second com-
ponent divided by the total pressure in the gas region. Near

the critical point K→1. When the gas phase is dilute,
Henry’s constant H is usually defined as

H = p2g/X�, �2.25�

with p2g��Tn2g� being the partial pressure of the solute,
Here H= pgK, where pg is the total gas pressure. To analyze
data near the critical point Levelt Sengers and co-workers4

used another definition of Henry’s constant,

kH = f2/X�, �2.26�

where f2 is the solute fugacity. In our notation we obtain
kH=Kng0�2

3e�g from Eqs. �2.8� and �2.9�.

C. Surface tension and surface adsorption

The surface tension � in binary mixtures may be calcu-
lated from Eq. �2.1�. It has been calculated in the gradient
theory in fair agreement with experimental data over a wide
temperature range.18–21 However, our result cannot be used
in the asymptotic critical region.

In Appendix A, the deviation ��=�−�0 will be calcu-
lated, where �0 is the surface tension in the pure fluid. For
small 
 it follows the Gibbs relation,8

�� = − T� . �2.27�

Here � is the excess adsorption of the solute on the interface
expressed as

� =� dz�n2�z� − n2� +
�n2

�n
�n�z� − n�0�
 , �2.28�

where �n2=n2g−n2� and �n=n�0−ng0 and the integrand is
nonvanishing far from the interface.

The physical meaning of � is as follows. For a finite
system with length L much longer than the interface width,
the interface position z=zin may be determined with the aid
of the Gibbs construction,

zinn�0 + �L − zin�ng0 = �
0

L

dzn�z� . �2.29�

Then � is expressed as

� = �
0

zin

dz�n2�z� − n2�� + �
zin

L

dz�n2�z� − n2g� , �2.30�

where the first �second� term represents the excess adsorption
in the liquid �gas� region. The integrands here tend to 0 far
from the interface so we may push the lower bound in the
first integral to −� and the upper bound in the second inte-
gral to � for a macroscopic system. The Gibbs relation
�2.27� has been used frequently for surfactants added in
water-air and water-oil systems,22 which induce a dramatic
decrease of � even at extremely low bulk densities. If salt is
added, �� contains an electrostatic contribution also.23

The surface tension �=��T ,
� of mixtures is defined on
the coexistence surface p= pcx�T ,
�. Since ���
 in Eq.
�2.27�, use of Eq. �2.22� gives the temperature derivative of
��T ,
� at fixed p in the form,
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� ��

�T
�

cx,p
=

d�0

dT
+

�s

�X
� . �2.31�

It is important that the second term on the right hand side is
independent of 
 as well as the first term. In the azeotropic
case �X=0, the second term tends to ��.

D. Mean-field critical behavior

1. Landau expansion

The mean-field critical behavior of dilute binary mix-
tures will then be examined near the critical point of the pure
fluid �solvent criticality�. The critical temperature, pressure,
and density at the solvent criticality are written as Tc0, pc0,
and nc0, respectively, in the pure fluid. The order parameter is
the solvent density deviation,

� = n1 − nc0. �2.32�

Here T−Tc0 and � are assumed to be small. The Landau
expansion of f0�n1 ,T� is of the form

f0 = f0c�T� + 
0c�T�� +
A0

2
�T − Tc0��2 +

B0

4
�4, �2.33�

where f0c�T�= f0�nc0 ,T� and 
0c�T�=
0�nc0 ,T� are the free
energy density and the chemical potential at the critical den-
sity, respectively. The Gibbs–Duhem relation for one-
component fluids yields


0c�T� = 
c0 − �sc0 − nc0
−1pcx� ��T − Tc0� , �2.34�

where 
c0 is the critical chemical potential, sc0 is the critical
entropy, and pcx� = ��p /�T�cx is the derivative of p with re-
spect to T along the coexistence line at the solvent criticality.
Use has been made of the relation ��p /�T�n� pcx� near the
solvent criticality.3

A small amount of the second component is then added
as a solute. Near the solvent criticality, we expand the solute
density n2 in Eq. �2.9� as

n2



= �C0 + C1� +

C2

2
�2 +

C3

3
�3
��1 − D12�

2��� . �2.35�

Here we may set T=Tc0 since the term −Tn2 is already a
small perturbation in the grand potential �2.11�. The coeffi-
cients C0, C1, C2, and C3 are obtained from the expansion of
e−� as

C0 = e−�c, C1 = − �c�C0, C2 = ��c�
2 − �c��C0,

�2.36�
C3 = 1

2 �3�c��c� − �c� − �c�
3�C0,

where �c�, �c�, and �c� are the derivatives �� /�n1, �2� /�n1
2,

and �3� /�n1
3 at the solvent criticality, respectively. The criti-

cal solute density and molar fraction read

n2c = 
C0, Xc = 
C0/nc0. �2.37�

Equilibrium is obtained by minimization of the grand
potential � in Eq. �2.11�, which is the integral of the density
�̂= f0− 
̂1n1−Tn2 plus the gradient term. Here 
̂1 should be
expressed in terms of the macroscopically given pressure p

�not treated as a fluctuating variable�, temperature T, and 
.
From the expression for 
1 in Eq. �2.3� some calculations
give


1 � 
c0 +
p − pc0

nc0
− sc0�T − Tc0� −

Tc0

nc0
n2c �2.38�

in the bulk regions. This relation also follows from integra-
tion of the Gibbs–Duhem relation �2.20� for mixtures. Note
that 
̂1 is equal to the right hand side of Eq. �2.38� in the
whole space. The Landau expansion of �̂= f0− 
̂1n1−Tn2 is
now of the form

�̂ = − p0�T,
� − nc0
−1h� +

A0

2
�T − Tc��2 + ¯ , �2.39�

where p0�T ,
�= p�nc0 ,T ,
� is the pressure in Eq. �2.5� at
n=nc0 and h has the meaning of the ordering field. Use of
Eqs. �2.34� and �2.38� gives

h = p − pc0 − pcx� �T − Tc0� − Tc0�C0 − nc0C1�
 . �2.40�

In the third term of Eq. �2.39� Tc=Tc0+�Tc is the critical
temperature with the shift

�Tc = 
Tc0C2/A0. �2.41�

Since h=0 at the criticality T=Tc and p= pc, the critical pres-
sure shift �pc= pc− pc0 is calculated as

�pc = pcx� �Tc + Tc0�C0 − nc0C1�
 �2.42�

to first order in 
. Since �Tc, �pc, and Xc are all linear in 
,
the derivatives of Tc and pc along the critical line are given
by dTc /dX=�Tc /Xc and dpc /dX=�pc /Xc. The critical line is
characterized by X=Xc�
� in Eq. �2.37�, leading to

dTc

dX
= nc0Tc0

C2

A0C0
, �2.43�

dpc

dX
= pcx�

dTc

dX
+ nc0Tc0�1 − nc0

C1

C0
� . �2.44�

In addition, from the third order term ��C3� in the expansion
of n2 in Eq. �2.35�, there arises a small shift of the critical
solvent density as

n1c − nc0 = 
Tc0C3/B0. �2.45�

If we expand �̂= f0− 
̂1n1−Tn2 up to the quartic term and
rewrite it in powers of n1−n1c, the third order term should
vanish. However, this critical density shift does not affect the
shifts of Tc and pc to first order in 
. Also the coefficient of
the gradient term in � is changed from D11 to

D11� = D11 − 
D12C1. �2.46�

This correction is irrelevant in the dilute limit.

2. Krichevskii parameter and concentration
fluctuations

In literature,4–7,13–15 use has been made of the thermody-
namic derivative ��p /�X�nT with n=n1+n2 and X=n2 /n to
analyze the critical behavior in dilute mixtures.13 From Eq.
�2.5� it is equal to Tn1�1+n1���−n1

2f0� in our approximation.
It is known to tend to a well-defined limit, called the
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Krichevskii parameter, as 
→0 at the solvent criticality. In
terms of C0 and C1 in Eq. �2.41�, it is expressed as

KKr � � �p

�X
�

nT

c

= Tc0nc0�1 − nc0C1/C0� . �2.47�

From Eqs. �2.43� and �2.44� it follows the well-known
relation4,13

KKr =
dpc

dX
− pcx�

dTc

dX
. �2.48�

From Eq. �2.35� the solute molar fraction behaves as
X=n2 /n1=
�C0+C1�� /nc0−n2c� /nc0

2 +¯ at T=Tc0. For
small T−Tc0 and � it is expressed as

X

Xc
= 1 + Am�T − Tc0� − �KKr/nc0

2 Tc0�� + ¯ , �2.49�

where Am is a constant. In two-phase coexistence this equa-
tion yields

�X/�v = �KKr/Tc0�Xc. �2.50�

From Eq. �2.22� this is the near-critical expression of

��p /�
�cx,T /Tc0= ��p /���cx,T in the dilute limit.

In Table I, we show experimental data of Tc0
−1dTc /dX,

�nc0Tc0�−1dpc /dX, �nc0Tc0�−1KKr, and dpc /dX /KKr for dilute
mixtures near the solvent criticality, where the solvent is CO2

�Ref. 24� or H2O.25,26 For CO2 we have Tc0=304 K,
nc0Tc0=26.1 MPa, and ��p /�T�cx /nc0=1.97, while for H2O
we have Tc0=647.01 K, nc0Tc0=96.0 MPa, and
��p /�T�cx /nc0=1.81. Thus dTc /dX, dpc /dX, and KKr can be
both positive and negative depending on the specific details
of the two components. These quantities are very small for
H2O–D2O mixtures,26 where the two components are very
alike. If the solute is H2O and the solvent is D2O, their signs
are simply reversed with their absolute values nearly un-
changed.

In two-phase coexistence with general compositions, the
present author introduced the parameter3,17

�az � nc
�X

�n
= −

1

nc
� �p

��
�

cx,T
, �2.51�

where nc=n1c+n2c is the critical density and �n=n�−ng. The
critical line under consideration is that of the gas-liquid
criticality for 
�az
�1 and is that of the consolute crit-
icality for 
�az
�1. In the dilute limit X→0, we have
�az�−�KKr /nc0Tc0�X. For 3He– 4He mixtures,1,17 the relation

�az�− 1
3X�1−X� roughly holds along the critical line, where

X is the 3He molar fraction. Thus KKr /nc0Tc0 is 1/3 with 3He
being a solute and is �1/3 with 4He being a solute. Thus
3He– 4He mixtures are nearly azeotropic at any X �even
away from the critical line�. The resultant crossover effects
have been observed in near-critical 3He– 4He mixtures in
statics and dynamics.27

On approaching the critical point, the thermal fluctuation
of � is enhanced with its variance proportional to the com-
pressibility KT�= ��n /�p�T� /n as in Eq. �B5� in Appendix B.
As shown in Eq. �2.49� or in Eq. �B12�, the thermal fluctua-
tion of the molar fraction contains the growing part
−�KKr /nc0

2 Tc0�X�.2,3,17 From Eqs. �B5�, �B8�, and �B12� the
concentration susceptibility ��X /���pT behaves near the criti-
cality as

T� �X

��
�

pT

� X + X2�Kcr
2 /nc0Tc0�KT�. �2.52�

The first term is the low density limit �see Eq. �B8��. The
second is the singular contribution stemming from the
solute-solvent interaction. We may set ��X /���pT�X /T and
replace the mixture compressibility KT� by the pure fluid
compressibility KT when

XKcr
2 KT/nc0Tc0 � 1. �2.53�

This condition has been assumed in the definition of the
Krichevskii parameter �see Appendix B�.

3. Critical behavior of surface tension

Using the Landau expansion of f0 in Eq. �2.33� we next
examine the mean-field critical behavior in two-phase coex-
istence, where the average order parameter values in the two
phases are �= ��e with

�e = �A0�Tc0 − T�/B0�1/2. �2.54�

The surface tension of the pure fluid �0 is written as

�0 = 4
3 �Tc0 − T�A0�e

2� . �2.55�

The interface profile is expressed as ��z�=�e tanh�z /2��
along the surface normal, where � is the correlation length in
two-phase coexistence expressed as

� = �D11/2A0�1/2�1 − T/Tc0�−1/2. �2.56�

Thus �0� �1−T /Tc0�3/2, as originally derived by
van der Waals.9

TABLE I. Tc� /Tc0, pc� /nc0Tc0, KKr /nc0Tc0, and pc� /KKr for CO2+solute and for H2O+solute near the solvent
critical point, where Tc�=dTc /dX and pc�=dpc /dX. The last quantity is related to the temperature derivative of
the surface tension in Eq. �2.60�. Data are taken from Refs. 24–26.

Solvent Solute Tc� /Tc0 pc� /nc0Tc0 KKr /nc0Tc0 pc� /KKr

CO2 Neon �0.0517 0.919 1.02 0.900
CO2 Argon �0.192 0.553 0.936 0.591
CO2 Ethanol 0.539 0.694 �0.380 �1.81
CO2 Pentanol 2.20 1.96 �2.42 �0.8.9
CO2 Ethane �0.182 �0.187 0.175 �1.07
H2O Toluene �1.32 �0.948 1.434 �0.661
H2O D2O �0.0050 �0.0041 0.0050 �1.21
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It is easy to calculate the surface adsorption �
in Eq. �2.28�. Use of the expansion �2.35� gives
��
C2�dz���z�2−�e

2�. Thus,

� = − 2C2�e
2�
 = − 2

�Tc

Tc0
A0�e

2� , �2.57�

so ��
�1−T /Tc0�1/2. Because d�0 /dT=−3�0 /2�Tc0−T�
=−2A0�e

2� from Eq. �2.55�, we find

� =
d�0

dT

�Tc

Tc0
. �2.58�

If we write �0=As�1−T /Tc0�3/2 with As being a constant, the
surface tension of dilute mixtures �=�0−T� is expressed as

� = AsTc0
−3/2�Tc�
� − T�3/2, �2.59�

to first order in 
. That is, the solute effect on � is only to
shift Tc0 to Tc�
�=Tc0+�Tc. From Eqs. �2.31� and �2.58� we
may express ��� /�T�cx in terms of �Tc. Further using Eq.
�2.42� it assumes a simpler form in terms of �pc or dpc /dX
as

� ��

�T
�

cx,p
/
d�0

dT
=

�v
�X

�pc

Tc0
=

1

KKr

dpc

dX
, �2.60�

which tends to a well-defined limit at the solvent criticality.
See the last column of Table I for the above ratio. It is nega-
tive if KKr and dpc /dX have different signs.

III. VAN DER WAALS THEORY OF MIXTURES

A. Dilute mixtures

The van der Waals theory of one-component fluids9 was
extended to binary mixtures by van der Waals and
Korteweg.3,6,16 For binary mixtures the Helmholtz free en-
ergy density f = f�n1 ,n2 ,T� is given by

f = T	
i

ni�ln� ni�i
3

1 − �
� − 1
 − 	

ij

wijninj , �3.1�

where �i= �2	 /miT�1/2� are the de Broglie lengths with m1

and m2 being the molecular masses and � being the Planck
constant. The �=v10n1+v20n2 is the volume fraction of the
hard-core region with v10 and v20 representing the molecular
van der Waals volumes. The coefficients wij represent the
strength of the van der Waals attractive interaction between
ij pairs. However, more elaborate thermodynamic models
have been used to predict the surface tension of real binary
mixtures.18–20

In the pure fluid limit �n2=0�, the free energy density
and the chemical potentials are given by

f0�n,T� = Tn ln� n�1
3

1 − �

 − Tn − w11n

2, �3.2�


0�n,T� = T ln� n�1
3

1 − �

 +

T�

1 − �
− 2w11n , �3.3�

where we set n=n1 and �=v01n1. Hereafter

� = v10
−1w11 �3.4�

is the attractive energy among the molecules of the first com-
ponent. In the pure fluid, the critical temperature, pressure,
and density are written as

Tc0 =
8�

27
, pc0 =

�

27
v10

−1, nc0 =
1

3
v10

−1. �3.5�

See the upper plate of Fig. 1 for the liquid and gas densities
in the van der Waals model. Far below the critical tempera-
ture in two-phase coexistence, the gas density ng0 becomes
very small compared to the liquid density n�0. In fact, if
pcx

0 �Tng0�Tn�0, the van der Waals theory yields

�� � 1
2 + 1

2 �1 − 4T/��1/2, �3.6�

�g/�� � ����/T�e−����2−���/T, �3.7�

where ��=v10n�0 is obtained from pcx
0 �0 and �g=v10ng0

from 
cx
0 �T ln�ng0�1

3�.
The quantity � in Eq. �2.2� becomes

� =
r�

1 − �
− ln�1 − �� −

2�

T
w� �3.8�

in terms of �=v0n1. Here two dimensionless parameters, the
volume ratio and the potential ratio, are introduced as
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FIG. 1. Upper plate: Az�T� in Eq. �3.13�, n�0 /nc0, and ng0 /nc0 vs T /Tc0 in the
van der Waals theory. Lower plate: K=Xg /X� vs T /Tc0 in dilute mixtures on
a semilogarithmic scale, where �r ,w�= �0.8,0.8� for �a�, �0.8,1.0� for �b�,
�1.5,1.0� for �c�, and �1.5,1.4� for �d�. Two parameters r and w are defined in
Eq. �3.9�.
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r =
v02

v01
, w =

w12

w11
, �3.9�

which characterize the physical properties of the second
component. If n�z�=n1�z� is the density profile of the pure
fluid across an interface, the density n2 is expressed as in Eq.
�2.9�. With the aid of Eqs. �2.7� and �3.3� we rewrite � as

� =
1

T

cx

0 − ln�n�1
3� + D11n� +

r − 1

1 − �
� −

2�

T
�w − 1��

�3.10�

in terms of �=v10n�z�. From Eq. �2.9� the space-dependent
molar fraction X�z�=n2�z� /n1�z� becomes

X = 
̃ exp� 1 − r

1 − �
� +

2�

T
�w − 1�� + D�n�
 , �3.11�

where 
̃=�1
3e−
cx

0 /T
 . = �m2 /m1�3/2e�
̂2−
cx
0 �/T and D�=D12

−D11. Notice that X=const or K=1 for r=1, w=1, and
D12=D11, where the two components have the same physical
properties.

B. Two-phase coexistence

From Eq. �3.11� the logarithm of the partition coefficient
K in Eq. �2.24� is expressed as

ln K =
�r − 1���

�1 − ����1 − �g�
−

2�

T
�w − 1��� , �3.12�

where ��=v01n�0, �g=v01ng0, and ��=��−�g=v10�n. In
the lower plate of Fig. 1, K versus T /Tc0 is shown for typical
four cases. Remarkably, the azeotropy �K=1� is attained in
the dilute limit on the following line in the r−w plane,

r − 1 = Az�T��w − 1� , �3.13�

where the coefficient Az�T� is determined by the solvent
properties only as

Az�T� = 2�1 − ����1 − �g��/T . �3.14�

See the upper plate of Fig. 1 for Az�T� versus T /Tc0. Here
Az→3 as T→Tc0, while for �g�1 we find Az�2 /�� from
Eqs. �3.6� and �3.7� and

ln K � �r − 1 − Az�w − 1����
2�/T . �3.15�

Using kH in Eq. �2.26�, Levelt Sengers and co-workers4 ex-
amined kH / f0 where f0=exp�
0 /T� is the fugacity of the
pure fluid. In the van der Waals theory it is of the form

ln
kH

f0
=

3

2
ln

m1

m2
+

r − 1

1 − ��

�� −
2�

T
�w − 1���. �3.16�

In Fig. 2, we display profiles of the molar fraction X�z�
divided by the molar fraction in the gas region Xg at T
=0.9Tc, where Az=2.88. In the left panel, we set r=0.8 and
vary w as 1.3, 1.1, 0.8, and 0.5. In the right panel, at r=1.5,
we have w=1.5, 1.2, 0.8, and 0.4. Thus X� /Xg=K−1 in-
creases with decreasing r and/or with increasing w. In our
numerical analysis, we set D11=D12=10a5 with a=v10

1/3. See
Sec. III C for justification of this choice of D11. It is worth
noting that Sahimi and Taylor19 calculated the density pro-
files of two components around an interface.

C. Surface tension

In the upper plate of Fig. 3, we show �0 and �0 /�3/2

versus T /Tc0 for the pure fluid, where �=1−T /Tc0 and use is
made of formula �A5� in Appendix A with D11=10a5. The
relation �0��3/2 nicely holds over a wide range of T /Tc0.
Remarkably, experimental data of the surface tension of
water can also be nicely fitted to the formula �expt=Aexpt
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�1−T /Tc0�3/2 over a wide temperature range except close to
the criticality �in the range 1−T /Tc0�0.1�.21 As in our pre-
vious work,28 we have determined D11 such that our numeri-
cal � and the experimental �expt for water reasonably agree
except close to the criticality. In fact, at T /Tc=0.675, our �
is 42.5 dyn/cm if we set D11=10a5, a=3 Å, and
Tc0=647.1 K, while the experimental value of water is
44.6 dyn/cm.

In the lower plate of Fig. 3, we display the surface ten-
sion change ��=−T� divided by Xg versus T /Tc0 for four
sets of �r ,w�. From Eq. �2.27� � is the space integral of the
excess solute density �n2�z� expressed in terms of the den-
sity n�z� of the reference pure fluid

�n2�z� = n2�z� − n2� −
n2� − n2g

n�0 − ng0
�n�z� − n�0� . �3.17�

In Fig. 4, we plot n2�z� for r=0.8 �left� and r=1.5 �right� for
various w. With increasing w, � becomes negative and its
magnitude increases strongly. In Fig. 5, we display the ratio

�dpc /dX� /KKr= ��� /�T�cx,p / �d� /dT� calculated from Eq.
�2.31� as a function of T /Tc0 for four sets of �r ,w�. It even
changes its sign from positive to negative with increasing T
for �r ,w�= �1.5,1.4�.

D. Near-critical behavior

The Landau expansion of f0 with respect to �=n−nc0 is
given in Eq. �2.32�. For the van der Waals model the coeffi-
cients are given by

A0 = 27
4 v10, B0 = 243

16 Tc0v10
3 . �3.18�

In the pure fluid, the liquid and gas densities are n�0=nc0

+�e and ng0=nc0−�e, where Eq. �2.49� gives

�e = 2nc0�1/2. �3.19�

Here �=1−T /Tc0 is the reduced temperature �positive below
the critical temperature�. See the upper plate of Fig. 1 for n�0

and ng0. Then,

�n = 2�e, �v = 18v10
2 �e, �s = 9v10�e. �3.20�

These differences are of order �1/2. In particular, �s=6�1/2.
The latter two relations are consistent with the Clausius–
Clapeyron relation �s /�v= ��p /�T�cx=1 /2v10 along the co-
existence curve. In addition, the correlation length � in Eq.
�2.51� becomes �=0.86a�−1/2 in our numerical analysis with
D11=10a5.

Using � in Eq. �3.6� we perform the Taylor expansion
e−�=C0+C1�+C2�2 /2+¯ as in Eq. �2.36�. In terms of r
and w in Eq. �3.9� the coefficients are expressed as

C0 = 2
3exp�− r/2 + 9w/4� ,

C1 = 3
4v10�− 3r − 2 + 9w�C0, �3.21�

C2 = 81
16v10

2 ��r − 3w�2 − 4w�C0.

The critical solute density and concentration are
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n2c = C0
, Xc = 3v10C0
 . �3.22�

The solute density difference in Eq. �2.18� and the composi-
tion difference in Eq. �2.19� are expressed as

�n2 = �3r − 9w + 2�Xcnc0�1/2,

�3.23�
�X = 3�r − 3w + 2�Xc�

1/2.

The Krichevskii parameter in Eq. �2.47� is given by

KKr/nc0Tc0 = 3
4 �r − 3w + 2� , �3.24�

which was already derived by Petsche and Debenedetti.6 See
Table I for experimental values of the above quantity. In
accord with these results, K behaves as

K = 1 + 3�r − 3w + 2��1/2 + ¯ , �3.25�

while ln�kH / f0�=const+3�r−3w+2��1/2 /2+¯ from Eq.
�3.16�. Levelt Sengers and co-workers4 found that data of
T ln�kH / f0� can well be fitted to the form C+B�n�−nc0� near
the critical point for a number of solutes in H2O.

From Eqs. �2.43� and �2.44� the derivatives dTc /dX and
dpc /dX along the critical line are written as

1

Tc0

dTc

dX
=

1

4
�r − 3w�2 − w , �3.26�

1

pc0

dpc

dX
= �r − 3w��r − 3w + 2� − 4�w − 1� . �3.27�

In Fig. 6, we show dTc /dX and dpc /dX in the r-w plane. In
Fig. 7, we show the curves of dTc /dX=0, dpc /dX=0, and the

azeotropic line �X=0. Thus, �X, dTc /dX, and dpc /dX can
be both positive and negative depending on r and w.

From Eqs. �2.58� and �3.26� the surface adsorption � is
written as

� =
1

4
��r − 3w�2 − 4w�Xc

d�0

dT
. �3.28�

From Eq. �2.60� we calculate the temperature-derivative of �
on the coexistence surface,

� ��

�T
�

cx,p
= � r − 3w

2
−

2�w − 1�
r − 3w + 2


d�0

dT
. �3.29�

Thus the above derivative can be both negative and positive
and can even diverge to �� on the azeotropic line
r−3w+2=0.

IV. SUMMARY

In summary, a Ginzburg–Landau theory has been pre-
sented for dilute binary mixtures, where the solute-solvent
interaction is relevant but the solute-solute interaction is neg-
ligible. A parameter 
 proportional to the solute fugacity has
been introduced in Eq. �2.8�. Up to first order in 
, all the
physical quantities of binary mixtures can easily be calcu-
lated in terms of the properties of the one-component fluid
and the solute-solvent interaction parameters. In more detail,
our main results are as follows.

�i� The coexistence surface has been given by Eqs. �2.16�
and �2.23� or by Eq. �2.22�. Henry’s constants have
been introduced in Eqs. �2.24�–�2.26�.

�ii� The Gibbs formula for the surface tension change ��
in Eq. �2.27� has been derived in Appendix A. The
surface tension derivative ��� /�T�pcx with respect to T
at fixed p has been obtained in Eq. �2.31�. Interest-
ingly, it consists of two terms both being independent
of 
.

�iii� The critical temperature shift �Tc is given in Eq.
�2.41� and the critical pressure shift �pc in Eq. �2.42�.

�iv� The Krichevskii parameter KKr has been given in Eqs.
�2.47� and �2.48�. The normalized parameter
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KKrXc /nc0Tc0 represents the size of the critical con-
centration fluctuations as in Eq. �2.49�, leading to
Eq. �2.52�.

�v� The surface adsorption � has been related to �Tc as in
Eq. �2.58� and ��� /�T�cx,p to �pc as in Eq. �2.66� near
the criticality. The solute effect on the near-critical
surface tension is simply to shift the critical tempera-
ture Tc0 by �Tc as in Eq. �2.59�.

�vi� Experimental data of dTc /dX, dpc /dX, and KKr have
been given in scaled forms in Table I, which shows
that they can be both positive and negative.

�vii� The van der Waals model of binary mixtures has
given simple expressions for all the theoretical ex-
pressions in Sec. II, as illustrated in the figures. The
solute-solvent interaction is described in terms of the
size ratio r and the potential ratio w in Eq. �3.9�.

�viii� The profiles of the solute density and its excess near
an interface have been numerically calculated as in
Fig. 2 and 4. The negative adsorption becomes
marked for large w.

�ix� The near-critical behavior in the van der Waals model
is very simple in the mean-field theory. In terms of r
and w we have calculated K, KKr, dTc /dX, dpc /dX, �,
and ��� /�T�cx,p. In the r-w plane, we have plotted
dTc /dX and dpc /dX in Fig. 6 and the curves of
dTc /dX=0, dpc /dX=0, and K=1 in Fig. 7.

Finally, we propose measurements of the surface tension
as a function of the temperature at fixed pressure for various
solutes in water or in CO2. The derivative ��� /�T�cx,p be-
comes independent of the solute density in the dilute limit
and can be both negative and positive. Its mean-field expres-
sion is given in Eq. �2.60� near the solvent criticality. In the
van der Waals theory, it depends on the size ratio r and the
potential ratio w as in Eq. �3.29�. It is also a relevant param-
eter determining the Marangoni flow around a bubble mov-
ing in heat flow in binary mixtures,12 as will be reported
shortly.
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APPENDIX A: CALCULATION OF SURFACE TENSION

Here the surface tension � of binary mixtures is exam-
ined from Eq. �2.1�. The grand potential density of mixtures
is given by

� = f − 	
i


̂ini +
T

2 	
i,j

Dijni�nj�, �A1�

where ni�=dni /dz and 
̂i take the values in two-phase coex-
istence. All the quantities change along the z axis. The space
integral of � gives the grand potential � in Eq. �2.10�. Then

� tends to −pcx far from the interface z→ �� and the sur-
face tension is expressed as

� =� dz���z� + pcx� . �A2�

Differentiation of ��z� in Eq. �A1� with respect to z yields
d� /dz=2T	ijDijni�nj� from Eq. �2.6�, where nj�=d2nj /dz2.
Therefore,

� = T	
ij

Dijni�nj� − pcx = 2� f − 	
i


̂ini� + pcx. �A3�

Then � in Eq. �A2� may also be expressed as �
=�dzT	ijDijni�nj�=2�dz�f −	i
̂ini+ pcx�.

Next � is expanded with respect to 
 in the dilute case.
As in the derivation of Eq. �2.11�, elimination of 
̂2 in Eq.
�A1� gives

� =� dz� f0�n1� − 
1n1 + pcx +
T

2
D11n1�

2 − Tn2
 , �A4�

where 
̂1=
cx
0 +�
1cx, n2 is given by the second line of Eq.

�2.9�, and the integrand vanishes as z→ ��. Let n=n�z� be
the density of the reference pure fluid or n�z�=lim
→0n1�z�.
Then n�z�→n�0 �ng0� as z→−���� and we have the inter-
face Eq. �2.7�. As 
→0 the surface tension of the pure fluid
is obtained as

�0 =� dz� f0�n� − 
cx
0 n + pcx

0 +
T

2
D11n�2
 . �A5�

From Eqs. �A4� and �A5� the surface tension change
��=�−�0 for small 
 is expanded with respect to the devia-
tion �n1�z�=n1�z�−n�z� as

�� =� dz��f0��n� − 
cx
0 − TD11n���n1 − �
1cxn + �pcx

− Tn2� + ¯ , �A6�

to first order in 
. Here the first term in the brackets vanishes
from Eq. �2.7�. Further use of Eqs. �2.16� and �2.17� yields
the Gibbs relation in Eq. �2.27�.

APPENDIX B: CORRELATION-FUNCTION
EXPRESSIONS

We examine the correlation-function expressions for
thermodynamic derivatives such as KKr in Eq. �2.47� and
��X /���pT in Eq. �2.52� in the framework in the book of the
present author.3 Equivalent relations for KKr were already
used in literature.6,14,15

The microscopic particle densities are written as

n̂j�r� = 	
��j

��r − r�� , �B1�

where the summation is over the particles of the species
j�=1,2� at position r�. Then nj = �n̂j�, where �¯� denotes the
equilibrium average. The pair correlation functions are writ-
ten as
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��n̂i�r��n̂j�0�� = ni�ij��r� + ninjgij�r� , �B2�

where �n̂i�r�= n̂i�r�−ni �i=1,2� are the density deviations
and gij�r� �i , j=1,2� are the radial distribution functions
tending to zero for large separation r. It is convenient to

introduce the concentration variable X̂�r� and the number

density variable n
ˆ

�r� by

X̂ = X +
n1

n2 n̂2 −
n2

n2 n̂1, n̂ = n̂1 + n̂2, �B3�

where �n̂�=n=n1+n2 and �X̂�=X=n2 /n. We define a fluctua-

tion variance for any space-dependent variables Â�r� and

B̂�r� by

�Â:B̂� =� dr��Â�r� − �Â���B̂�r� − �B̂��� . �B4�

The variances among n̂ and X̂ may be expressed in terms of
the thermodynamic derivatives,

�n̂:n̂� = nT� �n

�p
�

T�

, �X̂:X̂� =
T

n
� �X

��
�

pT

,

�B5�

�n̂:X̂� = nT� �X

�p
�

T�

=
T

n
� �n

��
�

pT

,

where n and X are treated as functions of the field variables
T, p, and �=
2−
1 in the derivatives. These variances are
linear combinations of the variances among the densities,
which are written as

Iij � �n̂i:n̂j� = ni�ij + ninj� drgij�r� , �B6�

from Eq. �B2�. On the other hand, the compressibility at
constant X is written as

KTX =
1

n
� �n

�p
�

TX

=
1

n2T��n̂:n̂� −
�n̂:X̂�2

�X̂:X̂�

 . �B7�

Near the mixture criticality, the ratio KTX /KT� behaves as

X / �X̂ : X̂��nX / ���X /���TpT� �see Eq. �2.52��. All the vari-
ances in Eqs. �B5� and �B6� diverge strongly at the mixture
criticality except for special cases such as the critical azeot-
ropy. In the low density limit X→0 under Eq. �2.44�, Eqs.
�B3� and �B6� give

�X̂:X̂� � �n̂2:n̂2�/n2 � X/n . �B8�

We also need to assume �X̂ : n̂��X for the existence of the
Krichevskii parameter �see Eqs. �B9� and �B10��.

We next examine the thermodynamic derivative
��p /�X�nT=−��n /�X�pT /nKTX. Its correlation-function ex-
pression reads

� �p

�X
�

nT

=
− nT�n̂:X̂�

�n̂:n̂��X̂:X̂� − �n̂:X̂�2
. �B9�

In the low density limit we use Eq. �B8� and replace the
denominator of Eq. �B9� by �n̂ : n̂�X /n to find

lim
X→0

1

nT
� �p

�X
�

nT

= − lim
X→0

n�n̂:X̂�
X�n̂:n̂�

= 1 − n1C12
� , �B10�

where the second line follows from Eq. �B3�. We define

C12
� = lim

n2→0
�n̂2:n̂1�/n2�n̂1:n̂1� , �B11�

which coincides with the space integral of the direct correla-
tion function C12�r� in the dilute limit.6,14,15 Here we define
Cij�r� in dimensionless forms.3 Thus the Krichevskii param-
eter KKr in Eq. �2.47� is the value of n1T�1−n1C12

� � at the
solvent criticality. This expression has been used to estimate
KKr for given molecular interaction parameters.6,14,15 From

Eqs. �B10� and �B11� the singular parts of X̂ and n̂2 are

�X̂�sing = �C12
� − 1/n1�X�n̂1,

�B12�
�n̂2�sing = C12

� n2�n̂1,

near the mixture criticality. Here we have calculated

projected parts of X̂ and n̂2 onto the critical fluctuation
�n̂1= n̂1−n1. Equation �2.52� is then obtained with the aid of
Eq. �B8�.
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