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Abstract. We examine the microscopic dynamics of supercooled liquids under
shear by performing extensive molecular dynamics simulations of a two-dimensional
binary liquid with soft-core interactions near, but above, the glass transition tem-
perature. Our simulations show that a drastic reduction of the structural relaxation
time and the shear viscosity occurs due to shear. The structural relaxation time de-
creases as γ̇−ν with an exponent ν ≤ 1, where γ̇ is the shear rate. The microscopic
dynamics were confirmed to be surprisingly isotropic regardless of the strength of
the anisotropic shear flow.

1 Introduction

As liquids are cooled toward the glass transition, the dynamics are drasti-
cally slowed down, while only small changes can be detected in the static
properties. One of the main targets of theoretical investigations of the glass
transition is to identify the mechanism of this drastic slowing-down. To this
end, a number of molecular dynamics (MD) simulations have been carried out
for supercooled liquids and revealed that the dynamics in supercooled liquids
are spatially heterogeneous[1–10]. In our previous studies, we have examined
bond breakage processes among adjacent particle pairs by MD simulations of
two (2D) and three dimensional (3D) model fluids. We found that the broken
bonds determined with an appropriate time interval (' 0.05τb, where τb is
the average bond breakage time), are almost equivalent to the critical fluctu-
ations in Ising spin systems. To support this picture, the structure factor of
the broken bonds can be excellently fit to the Ornstein-Zernike form.[4,5] The
correlation length ξ determined from this analysis increases with decreasing
temperature T and is related to τb or the structural α relaxation time τα via
the dynamic scaling law, τα ' 0.1τb ∼ ξz, with z = 4 in 2D and z = 2 in 3D.
The heterogeneous structure of the bond breakage is essentially the same as
that in local diffusivity.[6]

Another striking example occurs when one brings supercooled liquids
away from equilibrium. By rapidly changing the temperature or applying
shear flow, supercooled liquids undergo unique phenomena known as aging
or shear thinning [11–15]. These phenomena are not only conceptually new
but also practically important. However, physical properties of glassy ma-
terials have not yet been well-understood in nonequilibrium conditions. In
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previous work, we performed extensive MD simulations of binary soft-core
mixtures in two and three dimensions with and without shear flow. We found
that the dynamical properties of the supercooled liquids under shear can be
mapped onto those at quiescent states at higher temperatures [5]. In the
present study, we calculate intermediate scattering functions in shear flow by
using a method proposed by Onuki [17,18] to examine the microscopic dy-
namics of sheared supercooled liquids. Simulations have been done in 2D to
compare the present computational results directly with a theory developed
recently for sheared supercooled liquids in 2D [19,20].

2 Simulation method

To prevent crystallization and obtain stable amorphous states via MD simu-
lations, we choose a model system composed of two different particle species,
1 and 2, which interact via the soft-core potential

vab(r) = ε(σab/r)12, (1)

with σab = (σa+σb)/2, where r is the distance between the two particles, and
a, b denote particle species (∈ {1, 2}). We take the mass ratio to be m2/m1 =
2, the size ratio to be σ2/σ1 = 1.4, and the number of particles N = N1 +N2,
where N1 = N2 = 5000. Simulations are performed in the presence and
absence of shear flow keeping the particle density and the temperature fixed
at n = n1 +n2 = 0.8/σ2

1 (n1 = N1/V , n2 = N2/V ) and kBT = 0.526ε. Space
and time are measured in units of σ1 and τ0 = (m1σ

2
1/ε)1/2, respectively.

The size of the unit cell is L = 118. In the absence of shear, we impose
microcanonical conditions and integrate Newton’s equations of motion

dra
i

dt
=

pa
i

ma
,

dpa
i

dt
= fa

i . (2)

Very long equilibration periods are used so that no appreciable aging (slow
equilibration) effect is detected in various thermodynamic quantities, such
as the pressure, or in time correlation functions. Here, ra

i = (ra
xi, r

a
yi) and

pa
i = (pa

xi, p
a
yi) denote the position and the momentum of the i-th particle

of species a, and fa
i is the force acting on the i-th particle of species a.

In the presence of shear, the momentum p′ai = pa
i − maγ̇ra

yiêx is defined
as the momentum deviations relative to mean Couette flow. Using the Lee-
Edwards boundary condition, we integrate the so-called SLLOD equations of
motion keeping the temperature kBT (≡ N−1

∑
a

∑
i(p

′a
i )2/ma) at a desired

value using a Gaussian-constraint thermostat to eliminate viscous heating
effects[21]. We impose shear for t ≥ 0 after a long equilibriation time. Data
for the analysis has been taken and accumulated in steady states which can
be realized after transient waiting periods.
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Fig. 1. (a) Geometry of shear flow. (b) Shear advection in real space. (c) Shear
advection in Fourier space.

Figure 1 (a) shows the geometry of shear flow in the present simulation.
As shown in Fig.1 (b), shear flow with the rate γ̇ advect a positional vector
r as

r(t) = r + γ̇tryex, (3)

for time t, where eα is a unit vector in α ∈ {x, y} axis. The corresponding
time-dependent wave vector

k(t) = k + γ̇tkxey, (4)

is shown in Fig.1 (c). The above definition enable us to calculate the Fourier
component k of the time correlation function

C(k, t) ≡ 〈A−k(t)(t)Ak(0)〉 (5)

in shear flow [17,18]. We thus calculate the incoherent and the coherent parts
of the scattering function for the binary mixture using the definitions [22]

Fsa(k, t) =
1

Na

〈 Na∑

i=1

e[−i{k(−t)·ra
i (t)−k·ra

i (0)}]
〉

(6)

and

Fab(k, t) =
1
N

〈 Na∑

i=1

e[−ik(−t)·ra
i (t)]

Nb∑

j=1

e[ik·rb
j(0)]

〉
, (7)

with a, b ∈ {1, 2}. The α relaxation time τα of the present mixture, defined
by

F11(k0, τα) ' Fs1(k0, τα) = e−1, (8)

is equal to τα ' 1800 time units in the quiescent state for |k0| = 2π/σ1.
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3 Simulation Results

3.1 Microscopic Structure

The partial static structure factors Sab(k) are defined as

Sab(k) =
∫

dr eik·r〈n̂a(r)n̂b(0)〉, (9)

where

n̂a(r) =
Na∑

j

δ(r− ra
j ) (a ∈ {1, 2}), (10)

is the local number density of the species a. Note, the dimensionless wave
vector k is measured in units of σ−1

1 . For a binary mixture, there are three
combinations of partial structure factors, S11(k), S22(k), and S12(k). These
are plotted in Fig.2 (a) in the quiescent state after taking an angular average
over k. A density variable representing the degree of particle packing, corre-
sponding to the density of an effective one component system, can be defined
for the present binary system as

ρ̂eff(r) = σ2
1n̂1(r) + σ2

2n̂2(r). (11)

The corresponding dimensionless structure factor is given by

Sρρ(k) = σ−4
1

∫
dr eik·r〈δρ̂eff(r)δρ̂eff(0)〉 (12)

= n2
1S11(k) + n2

2(σ2/σ1)4S22(k) + 2n1n2(σ2/σ1)2S12(k), (13)

where δρ̂eff = ρ̂eff − 〈ρ̂eff〉. One can see from Fig.2 (b) that Sρρ(k) has a
pronounced peak at k ' 5.8 and becomes very small (∼ 0.01) for small k,
demonstrating that our system is highly incompressible at long wavelengths.
Because Sρρ(k) behaves quite similarly to S(k) of one component systems,
we examine space-time correlations in ρ̂eff(r) rather than those in the partial
number density n̂a(r) for the present binary system. The use of ρ̂eff(r) makes
comparison of our simulation data with the mode-coupling theory developed
for a one component system more meaningful.

We next examine the anisotropy in the static structure factor Sρρ(k) in
the presence of shear flow. Figures 3 and 4 show Sρρ(k) plotted on a two-
dimensional kx−ky plane (upper part) and the angular averaged curves (lower
part) within the regions (a)-(d) obtained at γ̇ = 10−3 and 10−2, respectively.
One sees that at a lower shear rate (γ̇ = 10−3), the shear distortion is negli-
gible at all the regions except for region (d) where the peak heights of Sρρ(k)
start decreasing. But, at higher shear rate (γ̇ = 10−2) the distortion becomes
prominent. This seems to indicate that the nonlinear effects due to shear
become important in this region. Ronis has explored the higher shear regime
for the structure factor of hard sphere colloidal suspensions and concluded
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Fig. 2. Partial structure factors Sab(k) in (a) and Sρρ(k) in (b) defined by eq.(13)
for the present binary mixture.

that, at higher shear, the peak should always be lower than the equilibrium
value plus a shift that depends on the direction[23]. At even higher shear
rate (γ̇ = 10−1, though the figure is not shown here), peaks in all directions
have been lowered. The peak with maximal distortion (region (b)) is shifted
to lower wave vectors while the opposite is true for the shift of the region
with minimal distortion (region (d)). The qualitative agreement with Ronis’
theory is good, but it is not clear that our results can be explained by a
simple two-body theory such as that of Ronis. Recently, Szamel has analyzed
S(k) for hard-sphere colloidal suspensions up to linear order in γ̇[24]. He took
three-body correlations into account and found quantitative agreement with
the shear viscosity evaluated using S(k).

It should be noted that because our system is an atomic liquid without
solvent, we cannot directly refer to the Péclet number since the bare diffusion
coefficient D0 does not exist. Therefore, a direct and quantitative comparison
with the theories discussed above is not possible. However, we can estimate
the relaxation times from the self-diffusion coefficients measured in [5]. This
allows us to estimate the Péclet number in the range between 10−1 and
102, which corresponds to the highest shear rates explored in the theoretical
analysis of our paper [20].

3.2 Tagged particle motions

We generalize the displacement vector of the tagged (jth) particle as

∆rj(t) = rj(t)− γ̇

∫ t

0

dt′yj(t′)ex − rj(0), (14)
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Fig. 3. Upper: Sρρ(k) at γ̇ = 10−3 plotted in a two-dimensional (kx, ky) plane.
Lower: The solid line is Sρρ(k) at equilibrium. Dots represents those observed in
the region indicated in the (kx, ky) plane above.

where ex is the unit vector in the x (flow) direction. In this displacement,
the contribution from convective transport by the average flow has been sub-
tracted. We then analyze the mean square displacement,

r2(t) ≡ 〈[∆r(t)]2〉 =
1

N1

N1∑

j=1

〈[∆rj(t)]2〉, (15)

of tagged particles for the smaller component (species 1). MSDs obtained at
T = 0.53 with shear rates 10−4 ≤ γ̇ ≤ 10−1 are plotted in Fig. 5, where the
mean square displacements of the x and y components of the vector ∆rj(t)
are separately displayed. Analogous to the effect of increasing temperature,
the shear flow enhances the mobility of particles. It is also demonstrated
that the statistical distribution of ∆ri(t) is surprisingly isotropic even at the
highest shear rate.

Figure 6 shows the non-Gaussian parameter for the smaller component

α2(t) ≡ 3〈∆r(t)4〉/5〈∆r(t)2〉2 − 1, (16)

which assumes a maximum value at t = t∗. One finds that both t∗ and α∗2 ≡
α2(t∗) tend to decrease with increasing shear rate. This is again analogous to
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Fig. 4. The same as Fig.3 but shear is increased to γ̇ = 10−2.
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Fig. 5. The mean square displacements (MSD) obtained at T = 0.53 under shear
flow.

the behavior observed when the temperature is increased without shear flow.
A quantative comparison of these two effects (increasing temperature and
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Fig. 6. The non-Gaussian parameter (NGP) obtained at T = 0.53 under shear flow.

increasing shear rare) is done in Fig. 7, which supports the analogy between
the two effects.
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Fig. 7. Peak values of NGP, α∗2, are plotted against t∗ at which NGP shows a peak.
Data are taken by both changing temperature without shear and changing shear
rate at a fixed temperature T = 0.53 (+).

We may also conclude that the decrease in NGP ∗ with increasing temper-
ature or shear rate represents the suppressed heterogeneity, which becomes
significant in glassy states.
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3.3 Intermediate Scattering Functions

Here we examine the dynamics of the local density variable ρ̂eff(r, t). To this
end, we define the intermediate scattering function,

Fρρ(k, t) = n2
1F11(k, t)+n2

2(σ2/σ1)4F22(k, t)+2n1n2(σ2/σ1)2F12(k, t),(17)

by taking a linear combination of the partial scattering functions defined in
eq.(7). Note that Fρρ(k, 0) = Sρρ(k) by definition. To investigate anisotropy
in the scattering function Fρρ(k, t), the wave vector k is taken in four different
directions k10, k11, k01, and k−11, where

kµν =
k√

µ2 + ν2
(µêx + νêy), (18)

and µ, ν ∈ {0, 1} as shown in Fig.8. The wave vector k (in reduced units) is
taken to be 5.8 (see also Fig.2 (b)). Because we use the Lee-Edwards periodic
boundary condition, the available wave vectors in our simulations should be
given by

k =
2π

L
(nêx, (m− nDx)êy), (19)

where n and m are integers and Dx = Lγ̇t is the difference in x-coordinate
between the top and bottom cells as depicted in Fig.6.5 of [21]. To suppress
statistical errors, we sample about 80 available wave vectors around kµν and
calculate Fρρ(k, t) using eqs.(17) and (7). Then we average Fρρ(k, t) over the
sampled wave vectors. The sampled wave vectors are indicated by dots in
Fig.8.

Figures 9 displays Fρρ(k, t)/Sρρ(k) for k = 5.8. Several features are no-
ticeable. First, the quantitative trends as a function of k are similar for differ-
ent values of γ̇. Secondly, shear drastically accelerates microscopic structural
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Fig. 9. F (k, t)/S(k) at kσ1 = 5.8 for various shear rates and at the different ob-
serving points (a) k10, (b) k11, (c) k01, and (d) k−11 as explained in Fig.(8).

relaxation in the supercooled state. The structural relaxation time τα de-
creases strongly with increasing shear rate as τα ∼ γ̇−ν with ν ' 1 as shown
in Fig.10. Thirdly, the acceleration in the dynamics due to shear occurs al-
most isotropically. Finally, almost the same trend is found for k = 2.9 and
k = 10 as shown in Fig.11. We observe surprisingly small anisotropy in the
scattering functions, even under extremely strong shear, γ̇τα ' 103. A similar
isotropy in the tagged particle motions has already been reported in Fig.5
[5]. The observed isotropy is more surprising than that observed in single
particle quantities. In particular, the fact that different particle labels are
correlated in the collective quantity defined in eq.(7) means that a simple
transformation to a frame moving with the shear flow cannot completely re-
move the directional character of the shear. Our results provide post facto
justification for the isotropic approximation of [25]. The observed simplicity
in the dynamics is quite different from the behavior of other complex fluids
such as critical fluids or polymers, where the dynamics become noticeably
anisotropic in the presence of shear flow.

4 Conclusions

We have performed extensive MD simulations for two- and three-dimensional
binary liquids with soft-core interactions near, but above, the glass tran-
sition temperature. In our previous studies, we identified weakly-bonded or
relatively-active regions from breakage of appropriately defined bonds.[4,5]
We also found that the spatial distributions of such regions resemble the
critical fluctuations in Ising spin systems, so the correlation length ξ can be
determined. The correlation length goes up to the system size as T is low-
ered, but no divergence seems to exist at nonzero temperatures. We have also
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Fig. 11. Left: F (k, t)/S(k) at (a) kσ1 = 2.9. Right: F (k, t)/S(k) at kσ1 = 10. All
symbols are as in Fig.9

demonstrated that the diffusivity in supercooled liquids is spatially hetero-
geneous on time scales shorter than 3τα, which leads to the breakdown of
the Stokes-Einstein relation.[6] The heterogeneity detected is essentially the
same as that of the bond breakage in our former works [4,5].

In the present study, we examined the microscopic dynamics of a two-
dimensional supercooled liquid under shear. The numerical analysis illus-
trated several interesting features such as (i) drastic reduction of relaxation
times and the viscosity (ii) almost isotropic relaxation irrespective of the di-
rection of the flow. The fact that the dynamics are almost isotropic supports
the simplified view of sheared supercooled liquids proposed so far. In this
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view, the effect of shear is transformed into scalar parameters, such the ef-
fective temperature, and the anisotropic nature of the nonequilibrium states
is not explicitly considered[15,25].
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