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The local mobility of particles in highly supercooled liquids is demonstrated to be spa-
tially heterogeneous on time scales comparable to the structural relaxation time τα. The
particle motions in the active regions dominantly contribute to the mean square displace-
ment, giving rise to a diffusion constant systematically larger than the Stokes–Einstein
value. The diffusion process eventually becomes homogeneous on time scales longer than
the life time of the heterogeneity structure (∼ 3τα). The heterogeneity structure in the
local mobility is very analogous to the critical fluctuation in Ising spin systems with
their structure factor being excellently fitted to the Ornstein–Zernike form.
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1. Introduction

As liquids are cooled toward the glass transition, dynamics is drastically slowed

down,1−3 while only small changes can be detected in static properties. One of

the main goals of theoretical investigations on the glass transition is to identify

the mechanism of the drastic slowing-down. To this end, a number of molec-

ular dynamics (MD) simulations has been carried out for supercooled liquids.

Several of them have revealed that the dynamics in supercooled liquids are spatially

heterogeneous.4−10 In particular, we have examined bond breakage processes among

adjacent particle pairs in our MD simulations of two (2D) and three-dimensional

(3D) model fluids and found that the broken bonds in an appropriate time inter-

val (' 0.05τb, where τb is the average bond breakage time) are very analogous to

the critical fluctuations in Ising spin systems. To support this picture, the structure

factor of the broken bonds can be excellently fitted to the Ornstein–Zernike form.4,5

The correlation length ξ thus determined increases with decreasing the tempera-

ture T and is related to τb or the structural α relaxation time τα via the dynamic

scaling law, τα ' 0.1τb ∼ ξz, where z = 4 in 2D and z = 2 in 3D. The heterogeneity

structure in the bond breakage is essentially the same as that in local diffusivity,

which we will discuss below.6
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In a wide range of liquid states, the Stokes–Einstein relation Dηa/kBT = const.

is confirmed to be satisfied between the translational diffusion constant D of a

tagged particle and the viscosity η even when the tagged particle diameter a is of

the same order as that of solvent molecules. However, it is known that this relation

is systematically violated in fragile supercooled liquids.2,5,6,11−14 Sillescu et al.,

observed the power law behaviorD ∝ η−ν with ν ∼= 0.75 at low temperatures.11 The

same tendency has been detected by molecular dynamics simulations in a 3D binary

mixture with N = 500 particles13 and in a 2D binary mixture with N = 1024.14

In our 3D simulations with N = 104, η and D have varied over four decades,

and the power law behavior D ∝ η−0.75 has been observed.5,6 Many authors have

attributed the origin of the breakdown to heterogeneous coexistence of relatively

active and inactive regions, among which the local diffusion constant is expected

to vary significantly.11,12,15–17 We have demonstrated via MD simulation that the

diffusivity of the particles is indeed heterogeneous on time scales comparable to τα
but becomes homogeneous on time scales much longer than τα.

2. The Model and MD Simulations

We performed MD simulations for 2D and 3D binary mixtures composed of two

different particle species, 1 and 2, with N1 = N2 = 5000 particles with the system

volume V being fixed. Parameters chosen are mostly common in 2D and 3D. They

interact via the soft-core potential vαβ(r) = ε(σαβ/r)
12, where r is the distance be-

tween two particles, σαβ = (σα+σβ)/2, and α, β ∈ 1, 2. The interaction is truncated

at r = 4.5σ1 in 2D and r = 3σ1 in 3D. The leapfrog algorithm is used to integrate

the differential equations with a time step of 0.005τ , where τ = (m1σ
2
1/ε)

1/2. The

space and time are measured in units of σ1 and τ . The mass ratio is m2/m1 = 2,

while the size ratio is σ2/σ1 = 1.4 in 2D or 1.2 in 3D. This size difference prevents

crystallization and produces amorphous states in our systems at low temperatures.

We fixed the particle density at n = 0.8/σd1 , where n = n1 +n2 is the total number

density, and d is the space dimensionality. The system linear dimension is L = 118

in 2D and L = 23.2 in 3D. For T ≥ 0.526 in 2D and T ≥ 0.267 in 3D, no appreciable

aging (slow equilibration) effect is detected in various quantities such as the pressure

or the density time correlation function owing to very long annealing times (2.5×105

at T = 0.267 in 3D, for example). However, at the lowest temperatures T = 0.337 in

2D and T = 0.234 in 3D, a small aging effect remains in the density time correlation

function.

Our simulations were performed in the absence and presence of shear flow. In

the unsheared case (γ̇ = 0), we performed simulations under the microcanonical

(constant energy) condition. However, in the sheared case (γ̇ > 0), we kept the

temperature at a constant using the Gaussian constraint thermostat. Our method

of applying shear is as follows: The system was at rest for t < 0 for a very long equili-

bration time and was then sheared for t > 0. Here we added the average velocity γ̇y

to the velocities of all the particles in the x direction at t = 0 and afterwards
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maintained the shear flow by using the Lee–Edwards boundary condition.19,20

Steady states were then realized after a transient time.

3. Results

3.1. Heterogeneity in configurational rearrangement

Bonds between neighboring particle pairs are well-defined in supercooled states

because the pair correlation functions gαβ(r) have a sharp peak at r ' σαβ .

We followed breakage processes of the bonds to investigate local configurational

rearrangements which are relevant for the structural (α) relaxation.4,5 Our defini-

tions of the bonds are as follows: For each atomic configuration given at time t0, a

pair of particles i and j is considered to be bonded if rij(t0) = |ri(t0) − rj(t0)| ≤
A1σαβ , where i and j belong to the species α and β, respectively. We have set

A1 = 1.1 for 2D and 1.5 for 3D. After a lapse of time ∆t, pairs are regarded to

have been broken if rij(t0 + ∆t) > A2σαβ with A2 = 1.6 for 2D and 1.5 for 3D.

We stress that the results are insensitive to the precise choice of A1 and A2 as

long as 1 < A1 < l2 and A1 ≤ A2 < l2, where l2 is the second peak position

of gαβ(r) divided by σαβ . We have followed the relaxation of the total surviv-

ing (unbroken) bonds Nbond(∆t) with increasing ∆t. No significant difference has

been found among the three kinds of bonds, 1–1, 1–2, and 2–2, so we consider the

total sum only. We define the bond breakage time τb by fitting Nbond(∆t) to the

stretched exponential form, Nbond(∆t) ∼ exp[−(∆t/τb)
a′ ], the exponent a′ is close

to 1 at relatively high temperatures but is considerably smaller than 1 at the low-

est temperatures (for example, a′ ∼ 0.6 at T = 0.234 in 3D). Following the bond

breakage process, we can visualize the kinetic heterogeneity without ambiguity and

quantitatively characterize the heterogeneous patterns. We found the broken bonds

in a time interval (0.05τb or 0.1τb in our case) are seen to form clusters with a

characteristic size ξ which increases with decreasing temperature. Furthermore, the

clusters of the broken bonds in the subsequent time intervals are found to migrate

and eventually cover the whole space. This demonstrates that active regions follow

complex space-time evolution on the scales of ξ and τb. It is worth nothing that

this is an important difference between the present structural glass and the spin

glass. On the other hand, in shear flow, the heterogeneity is found to become much

suppressed, while its spatial anisotropy remains small.

We then defined the structure factor Sb(q,∆t) of the broken bonds as

Sb(q,∆t) =
1

Nb

〈∣∣∣∣ ∑
<i,j>

exp(iq ·Rij)

∣∣∣∣2〉 , (1)

where Nb is the total number of the broken bonds in a time interval [t0, t0+∆t], and

Rij = (1/2)[ri(t0) + rj(t0)] is the center position of the broken pairs at the initial

time t0, The summation is over the broken pairs, and the angular average over the

direction of the wave vector has been taken. We here choose ∆t = 0.05τb and found
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that Sb(q, 0.05τb) can be nicely fitted to the Ornstein–Zernike (OZ) form:

Sb(q, 0.05τb) = Sb(0, 0.05τb)/(1 + ξ2q2) . (2)

The correlation length ξ is determined from this expression. It grows up to the

system length at the lowest temperatures and is insensitive to the width of the

time interval ∆t as long as it is considerably shorter than the bond breakage time

τb. The agreement of our Sb(q, 0.05τb) with the OZ form can be clearly seen in

the plots of Sb(q, 0.05τb)/Sb(0, 0.05τb) versus qξ in Fig. 1, in which all the data

collapse onto a single OZ master curve both in 2D and 3D. In particular, in 3D the

deviations are very small, although ξ ∼ L for low T and small γ̇ in our case. We

also notice that Sb(q, 0.05τb) is insensitive to the temperature at large q, so from

the OZ form, we find

Sb(0, 0.05τb) ∼ ξ2 . (3)

The clusters of the broken bonds are thus very analogous to the the critical fluctu-

ations in Ising spin systems. In fact, small-scale heterogeneities with sizes ` in the

region 1� `� ξ are insensitive to the temperature. The relation (3) is analogous

to the relation χ ∝ ξ2−η in Ising spin systems between the magnetic susceptibility

χ = limq→0 S(q) and the correlation length ξ near the critical point. Here S(q) is

the spin structure factor and η is the Fisher critical exponent (� 1 in 3D). From

our data, we cannot conclude any divergence of ξ at a nonzero temperature, because

of the finite-size effect arising from ξ ∼ L. Furthermore, as in critical dynamics,

we have confirmed a dynamical scaling relation between the bond breakage time τb
and the correlation length ξ,

τb ∝ ξz , (4)
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Fig. 1. Sb(q, 0.05τb)/Sb(0, 0.05τb) on logarithmic scales for various T and γ̇ in 2D (a) and
3D (b). The solid line is the Ornstein-Zernike form 1/(1 + x2) with x = qξ.
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Fig. 2. Universal relation between the correlation length ξ(γ̇) and the bond breakage time τb(γ̇).
In 2D (a), the line of the slope 4 is a viewing guide and L is the system length. The corresponding
3D plot is shown in (b) with the slope being 2.

where z = 4 in 2D and z = 2 in 3D as shown in Figs. 2(a) and 2(b). At present, we

cannot explain the origin of these simple numbers for z. We may only argue that z

should be larger in 2D than in 3D because of stronger configurational restrictions

in 2D. It is surprising that Eq. (4) holds even in strong shear γ̇τb(0) � 1. In a

zeroth-order approximation, therefore, the kinetic heterogeneities are characterized

by a single parameter, ξ or τb, owing to the small space anisotropy induced by shear

in our systems. The shear rate γ̇ is apparently playing a role similar to a magnetic

field h in Ising spin systems. Thus, γ̇ and T are two relevant external parameters

in supercooled liquids, while h and the reduced temperature (T − Tc)/Tc are two

relevant scaling fields in Ising systems.

3.2. Tagged particle diffusion and heterogeneity in local diffusivity

Let us consider the incoherent density correlation function,

Fs(q, t) =
1

N1

〈
N1∑
j=1

exp [iq ·∆rj(t)]
〉

(5)

for the particle species 1, where ∆rj(t) = rj(t)− rj(0) is the displacement vector

of the jth particle. The α relaxation time τα is then defined by Fs(q, τα) = e−1

at q = 2π for various T . We also calculate the coherent time correlation function,

S11(q, t) = 〈n1(q, t)n1(−q, 0)〉, where n1(q, t) =
∑N1

j=1 exp [iq · rj(t)] is the Fourier

component of the density fluctuations of the particle species 1. The decay profiles

of S11(q, t) at its first peak wave number q = qm ' 2π and Fs(q, t) at q = 2π
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nearly coincide in the whole time region studied (t < 2 × 105) within 5%, hence

S11(qm, τα)/S11(qm, 0) ∼= e−1 holds for any T in our simulation. Such agreement is

not obtained for other wave numbers, however. Furthermore, some neutron-spin-

echo experiments21 showed that the decay time of S11(qm, t) is nearly equal to the

stress relaxation time and as a result the viscosity η is of order τα. In agreement with

this experimental result, we obtained a simple linear relation τα ∼= (Aη/q
2
m)η/T

in our simulations.6 The coefficient Aη is close to 2π in our system. Here, we

may define a q-dependent relaxation time τq by F (q, τq) = e−1. Thus, particu-

larly at the peak wave number q = qm, the effective diffusion constant defined by

Dq ≡ 1/q2τq is given by the Stokes–Einstein form even in highly supercooled liq-

uids. However, notice that the usual diffusion constant is the long wavelength limit,

D = limq→0Dq. It is usually calculated from the mean square displacement,

〈(∆r(t))2〉 = 〈
∑N1

j=1(∆rj(t))
2〉/N1. The crossover of this quantity from the plateau

behavior arising from motions in transient cages to the diffusion behavior 6Dt has

been found to take place around t ∼ 0.1τα(' 0.01τb).
5 In Fig. 3(a), we plotDτα ver-

sus τα, which demonstrates breakdown of the Stokes–Einstein relation in agreement

with the experimental trend.11,12

To examine the diffusion process in more detail, we consider the van Hove self-

correlation function, Gs(r, t) = 〈
∑N1

j=1 δ(∆rj(t)− r)〉/N1. Then,

Fs(q, t) =

∫ ∞
0

dr
sin(qr)

qr
4πr2Gs(r, t) (6)
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Fig. 3. (a) Dτα versus τα in a quiescent supercooled liquid. The solid line represents the Stokes-
Einstein value DSEτα = (2π)−2. (b) 4πr4Gs(r, t) versus r at t = τα. The solid line is for T = 0.267
and the broken line is for T = 0.473. The dotted line represents the Brownian motion result. The
peaks at r ' 1.2 and 2 in the solid line arise from hopping processes in our system at T = 0.267.
Note that the areas below the curves give 6Dτα.
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is the 3D Fourier transformation of Gs(r, t). At the peak wavenumber q = 2π, the

integrand in Eq. (6) vanishes at r = 1, and the integral in the region r < 1 is

confirmed to dominantly determine the decay of Fs(2π, t). On the other hand, the

mean square displacement

〈(∆r(t))2〉 =
∫ ∞

0

dr4πr4Gs(r, t) (7)

is determined by the particle motions out of the cages for t & τα in glassy states.

In Fig. 3(b), we display 4πr4Gs(r, τα) versus r, where τα = 3.2 and 2000 for T =

0.473 and 0.267, respectively. These curves may be compared with the Gaussian

(Brownian) result, (2/π)1/2`−3r4 exp(−r2/2`2), where 3`2 = 6DSEτα = 3/2π2 is

the Stokes–Einstein mean square displacement. Because the areas below the curves

give 6Dτα, we recognize that the particle motions over large distances r > 1 are

much enhanced at low T , leading to the violation of the Stokes–Einstein relation.

We then visualize the heterogeneity of the local diffusivity. To this end, we pick

up mobile particles of the species 1 with |∆rj(t))| > `c in a time interval [t0, t0 + t]

and number them as j = 1, . . . , Nm. Here `c is defined such that the sum of ∆rj(t)
2

of the mobile particles is 66% of the total sum (∼= 6DtN1 for t & 0.1τα). In Fig. 4,

these particles are drawn as spheres with radii aj(t) ≡ |∆rj(t)|/
√
〈(∆r(t))〉 located

at Rj(t) ≡ (1/2)[rj(t0) + rj(t0 + t)] in time intervals [t0, t0 + τα] for T = 0.473 (a)

and 0.267 (b) and in [t0, t0 + 10τα] for T = 0.267 (c). The mobile particle number

Nm is 1595 in (a), 725 in (b), and 1316 in (c), while the Gaussian results should be

Nm = 1800. The ratio of the second moments c2 ≡
∑Nm
j=1 aj(t)

2/
∑N1

j=1 aj(t)
2 is held

fixed at 0.66, while the ratio of the fourth moments c4 ≡
∑Nm
j=1 aj(t)

4/
∑N1

j=1 aj(t)
4

turns out to be close to 1 as c4 = 0.89 in (a), 0.92 in (b), and 0.90 in (c). The

mobile particles are homogeneously distributed for T = 0.473 at τα, whereas for

T = 0.267, the heterogeneity is significant at τα, but is much decreased at 10τα. In

fact, the variance defined by V ≡ Nm
∑Nm
j=1 aj(t)

4/(
∑Nm
j=1 aj(t)

2)2−1 is 0.27 in (a),

Fig. 4. Mobile particles of the species 1 with a time interval t = τα at T = 0.473 (a) and T = 0.267
(b) and with t = 10τα at T = 0.267 (c). The radii of the spheres are |∆rj(t)|/

√
〈(∆r(t))2〉 and

the centers are at (1/2)[rj(t0)+rj(t0 +t)]. The system linear dimension is L = 23.2. The darkness
of the spheres represents the depth in the 3D space.
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0.41 in (b), and 0.32 in (c). Note that the statistical average of V (taken over many

initial times t0) is related to the non-Gaussian parameter,

A2 ≡
3〈∆r(t)4〉
5〈∆r(t)2〉2 − 1 =

3N1

〈
N1∑
j=1

aj(t)
4

〉

5

〈 N1∑
j=1

aj(t)
2

〉2 − 1 , (8)

by

〈V〉 ∼= 5〈c4〉〈Nm〉
3c22N1

(1 +A2(t))− 1 , (9)

where the deviations c4 − 〈c4〉 and Nm/〈Nm〉 − 1 are confirmed to be very small

for large N1 and are thus neglected. We may also conclude that the significant

increase of A2(t) in glassy states originates from the heterogeneity in accord with

some experimental interpretations.22

We next consider the Fourier component of the diffusivity density defined by

Dq(t0, t) ≡
N1∑
j=1

aj(t)
2 exp[−iq ·Rj(t)] , (10)

which depends on the initial time t0 and the final time t0 + t. The correlation

function

SD(q, t, τ) = 〈Dq(t0 + τ, t)D−q(t0, t)〉/N1 (11)

is then obtained after averaging over many initial states. We plot SD(q, τα, 0) in

Fig. 5(a). The increase in SD(q, τα, 0) for large q at low T is attributed to increase
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Fig. 5. The correlation functions (a) SD(q, τα, 0) and (b) Sb(q, τα).
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in A2(τα). The heterogeneity structure of the broken bonds Sb(q, τα) is also plotted

in Fig. 5(b). It is confirmed that SD(q, τα, 0) tends to its long wavelength limit for

q . ξ−1, where ξ coincides with the correlation length obtained from Sb(q, τα).

As the difference τ of the initial times increases with fixed t = τα, SD(q, τα, τ)

relaxes as exp[−(τ/τh(q))
c], where τh(q) is the wavenumber dependent life time of

the heterogeneity structure. At T = 0.267 and q = 0.345, we obtained c ' 0.5 and

τh(q) ' 3τα. The two-time correlation function among the broken bond density also

relaxes with τh in the same manner.23

4. Conclusion

We performed extensive MD simulations and identified weakly bonded or relatively

active regions from breakage of appropriately defined bonds.4,5 We also found that

the spatial distributions of such regions resemble the critical fluctuations in Ising

spin systems, so the correlation length ξ can be determined. It grows up to the sys-

tem size as T is lowered, but no divergence seems to exist at nonzero temperatures.

In the present work, we have demonstrated that the diffusivity in supercooled liquids

is spatially heterogeneous on time scales shorter than 3τα, which leads to the break-

down of the Stokes–Einstein relation.6 The heterogeneity detected is essentially the

same as that of the bond breakage in our previous works.
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