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Soft and nonsoft structural transitions in disordered nematic networks

Nariya Uchida*
Department of Physics, Kyoto University, Kyoto 606, Japan

~Received 31 March 2000!

Properties of disordered nematic elastomers and gels are theoretically investigated with emphasis on the
roles of nonlocal elastic interactions and crosslinking conditions. Networks originally crosslinked in the iso-
tropic phase lose their long-range orientational order by the action of quenched random stresses, which we
incorporate into the affine-deformation model of nematic rubber elasticity. We present a detailed picture of
mechanical quasi-Goldstone modes, which accounts for an almost completely soft polydomain-monodomain
~PM! transition under strain as well as a ‘‘four-leaf clover’’ pattern in depolarized light scattering intensity.
Dynamical relaxation of the domain structure is numerically studied using a simple model. The peak wave
number of the structure factor obeys a power-law-type slow kinetics and goes to zero in true mechanical
equilibrium. The effect of quenched disorder on director fluctuation in the monodomain state is analyzed. The
random frozen contribution to the fluctuation amplitude dominates the thermal one, at long wavelengths and
near the PM transition threshold. We also study networks obtained by crosslinking polydomain nematic
polymer melts. The memory of the initial director configuration acts as correlated and strong quenched disor-
der, which renders the PM transition nonsoft. The spatial distribution of the elastic free energy is strongly
dehomogenized by external strain, in contrast to the case of isotropically crosslinked networks.

PACS number~s!: 61.30.Cz, 61.41.1e, 64.70.Md
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I. INTRODUCTION

Elastomers and gels are intrinsically disordered solids
retain the memory of their initial states. The nonequilibriu
processes of their fabrication create frozen heterogeneitie
the network structure, which range in size from mesosco
to macroscopic scales@1,2#. The presence of the quenche
disorder comes to the fore when we introduce some
order in the system. For instance, density fluctuations
swollen gels near the critical point are strongly enhanced
the heterogeneities. Under stretching, they produce the
called ‘‘abnormal butterfly’’ pattern in small-angle neutro
scattering intensity@3–6#. It illustrates how the elasticity o
gels gives rise to a non-trivial effect unexpected in oth
random systems. Here we address another example of
order in disordered elastic networks.

Nematic liquid-crystalline elastomers and gels constitut
unique class of solids characterized by a coupling betw
the orientational and translational degrees of freedom. Ph
cal consequences of the strain-orientation coupling h
been the subject of a considerable amount of studies,
theoretical and experimental. We may summarize some
portant theoretical advances as follows:~i! De Gennes@7#
showed that a spontaneous elongation along the direct
induced by the isotropic-nematic~IN! transition; ~ii ! a mo-
lecular model of nematic networks was constructed
Warneret al. @8#, extending the classical affine-deformatio
model of rubber elasticity;~iii ! uniformly oriented networks
possess soft modes of strain and orientation fluctuations
do not accompany any change of rubber-elastic free ene
It was first predicted by Golubovic´ and Lubensky@9# on a
phenomenological basis and later extended by the affi
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deformation theory@10,11#. Thus, and in other ways, th
behavior of homogeneous and clean nematic network
now fairly well understood@12#.

In practice, however, nematic networks in equilibriu
quite often exhibit polydomain director textures, where t
orientational correlation length is typically in the micro
range. Under external strain, polydomain networks underg
structural change into a macroscopically aligned mono
main state, where the director lies along the extensional
rection. This change, called the polydomain-monodom
~PM! transition, is characterized by a highly nonlinear m
chanical response@13–19#. The strain-stress curve shows
small slope in the partially aligned~polydomain! state. De-
pending on the material and the method of synthesis,
slope is sometimes vanishingly small while it is sizable
other cases. The macroscopic stress as a function of s
shows a steep rise as the system turns into the monodo
state.

There have been a few theoretical attempts to desc
polydomain networks and their mechanical responses.
Bosch and Varichon@20# set up the first model, in which
they attributed the origin of the equilibrium texture to a ra
dom anchoring field exerted by network crosslinks. An int
esting analogy with random anisotropy magnets@21# was
pursued by Fridrikh and Terentjev@22#. They proposed a
mapping to the random-fieldXY model under an externa
magnetic field, from which analysis they predicted a disco
tinuous stress-orientation curve.

Nonetheless, the role of strain-orientation coupling
polydomain networks is still far from clear. There are tw
aspects to be considered. First, the previous theories ass
only local interactions between domains, for instance by
guing that the elastic free energy localizes in domain wa
under strain@22#. In general, however, inhomogeneities in a
elastic material cause nonlocal or long-range interacti
5119 ©2000 The American Physical Society
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5120 PRE 62NARIYA UCHIDA
mediated by the strain field. Such elastic interactions con
the physics of various systems, e.g., solids with dislocati
@23# or surface defects@24,25#, phase-separating alloy
@26,27#, gels undergoing swelling@28,29#, and membranes
with inclusions@30#. Disordered nematic networks provid
another intriguing example, and differ from most of th
above materials in having a nonscalar order parameter.
ond, the mechanical response should strongly depend on
crosslinking condition. Polydomain elastomers have b
obtained by either of the following ways@14,17#: ~i! to
crosslink a polymer melt in the isotropic phase and then c
it into the nematic phase;~ii ! to crosslink a nematic polyme
melt containing polydomain textures. These two cases h
not been theoretically well distinguished so far. We sh
refer to them as the cases of isotropic and anisotro
crosslinkings, respectively.

Recently, we studied the elastic interaction in isotro
cally crosslinked networks@31#, and found an almost com
pletely soft PM transition@32#. The macroscopic stress du
to the strain-orientation coupling was shown to be sligh
negative and ofO(a2) in the PM transition region, wherea
is the degree of chain anisotropy. This contrasts with
earlier prediction of a positive stress ofO(a) @22#. The elas-
tic interaction also produces a ‘‘four-leaf clover’’ pattern
the depolarized light scattering intensity, which resemb
the experimental observation by Clarkeet al. @16,21#.

In this paper, we extend previous work@31,32# and pro-
vide the details of our picture of the PM transition. Here
us summarize the ideas and results which we have not
phasized in previous work. First, we pursue the idea t
random internal stresses destroy the long-range orientati
order, which was suggested~but not proven! earlier in a
broader context@9#. This will be done by incorporating the
notion of frozen heterogeneous strains into the exten
affine-deformation theory@8#. We argue that the random in
ternal stresses act as stronger sources of disorder tha
random molecular field due to crosslinks@20,21#. We dem-
onstrate the prediction@9# of critical enhancement of orien
tational fluctuation by frozen heterogeneities, by analysis
director modes in the monodomain state. Second, evolu
of domain structure with and without external stretching
numerically simulated by a simplified dynamical model. T
‘‘four-leaf clover’’ scattering pattern has four peaks at fin
wave numbers, and the peak height is a nonmonotonic fu
tion of the macroscopic strain, in qualitative agreement w
experiment. We find a slow dynamical relaxation of t
structure factor, and show that the peak wave number asy
totically goes to zero in the long-time limit. Third, we stud
the case of anisotropic crosslinking. In this case, the ini
director configuration of a macroscopic polydomain textu
is memorized into the network. It provides a source of stro
and correlated disorder, resulting in a nonsoft PM transiti
The spatial distribution of elastic free energy in anisotro
cally crosslinked networks is strongly dehomogenized
strain, while that in isotropically crosslinked networks is u
changed during the PM transition.

This paper is organized as follows. In Sec. II, we intr
duce a random stress model, derive an effective free ene
and discuss the mechanism of the soft mechanical respo
Section III describes a numerical simulation of the polyd
main state and the PM transition. In Sec. IV, we analyze
ol
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effect of random stresses on director fluctuations in
monodomain state. We study networks prepared in
nematic phase in Sec. V. In Sec. VI, we summarize the
sults in comparison to existing experiments, and conclu
with a proposal of future directions.

II. MODEL AND ANALYSIS

A. Random stresses in isotropic networks

It has been known for a long time@1,33# that the network
structure of gels is often heterogeneous on many len
scales, which are considerably larger than the mesh size~see
Fig. 1!. In the swollen state, these imperfections manif
themselves as density inhomogeneity and are obse
through the so-called butterfly pattern in neutron-scatter
intensity or as speckles in light scattering experiment@2,6#.
Although less frequently discussed in the literature, it
natural to expect that elastomers, often fabricated by dry
gels, also contain the memory of heterogeneous network
mation. The frozen heterogeneities reflect the nonequilibri
nature of the crosslinking processes, and produce ran
internal stresses in the material. While the roles of rand
stresses in gels and other amorphous solids have been
cussed from a phenomenological point of view@9,34#, much
remains to be done to understand them on the basis
molecular theory@35#. In this subsection, we recapitulate th
notion of random stresses using the classical affi
deformation theory of isotropic rubber networks@36#, in or-
der to prepare for modeling disordered nematic networks
the next subsection.

The basic object in the affine-deformation theory is t
probability distribution of the chain’s end-to-end vectorr.
The distribution function at thermal equilibrium is isotrop
and Gaussian, and is given by

Peq~r!5N 21expS 2
d

2V
r2D , ~1!

whereV 5^r2&eq is a constant,d is the spatial dimension
andN5*dr Peq(r) is the normalization factor. The macro
scopic deformation of the network is described by t
Cauchy deformation tensor,

FIG. 1. Schematic illustration of disordered network structu
When the nematic order is introduced, the director is preferenti
oriented along the extensional axes of frozen network strains.
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PRE 62 5121SOFT AND NONSOFT STRUCTURAL TRANSITIONS IN . . .
L i j 5
]r i

]r 0 j
, ~2!

wherer and r0 are the positions of material points at obse
vation and at the moment of crosslinking, respectively. T
basic assumption of the theory is that each chain’s end
end vector affinely changes asr→L•r in response to the
macroscopic deformation. The free energy per chain is gi
by @36#

f chain52kBTE dr P0~r!ln Peq~L•r!, ~3!

where P0(r) is the probability distribution function at th
moment of crosslinking, which is not necessarily identical
the equilibrium distribution. We assume that the chains
distorted before crosslinking, and denote the deviation fr
the equilibrium conformation by a tensorR, defined by

^rr&05V~ I1R!, ~4!

whereI is the unit tensor. If the deviation is not very larg
and the chains are not stretched out, we may still appr
mateP0 to be Gaussian, and set

P0~r!5N 0
21 expF d

2V
r•~ I1R!21

•rG . ~5!

Substituting Eqs.~1! and ~5! into Eq. ~3!, we have

f chain5
kBT

2
@Tr G1R:G1 ln det~ I1R!#, ~6!

where Gi j 5LkiLk j is the metric tensor of deformation
Equation~6! is not new and essentially contained in the cla
sical theory of Flory@38#. Taking the spatial heterogeneity o
R into account and neglecting terms independent ofL, the
total elastic free energy is written as

Fel5
kBTn0

2 E dr0~Tr G1R:G!, ~7!

where n0 is the number density of subchains. Inhomog
neous contribution of the formR:G can be also derived from
Cauchy’s theory of solids bound by a central force@34,37#.
We shall callRi j the quenched random stress@9#, although it
is more directly related to quenched randomstrain in the
present model. For simplicity, we assume that the fro
heterogeneities have a single characteristic sizejR , which is
substantially larger than the mesh size. After a coar
graining on the scalejR , we can regardRi j as a spatially
uncorrelated Gaussian random variable satisfying

^Ri j ~r0!&50, ~8!
-
e
o-

n

e

i-

-

-

n

e-

^Ri j ~r0!Rkl~r08!&5jR
dd~r02r08!

3Fb2S d ikd j l 1d i l d jk2
2

d
d i j dklD

1b82d i j dklG . ~9!

The dimensionless constantsb andb8 represent the magni
tudes of shear and dilatational quenched strains, respecti

B. Random stresses in nematic networks

Next we consider nematic elastomers and gels. War
et al. @8# constructed an affine-deformation theory of nema
networks by generalizing the classical theory. Their ba
observation is that nematic chains with low backbone rig
ity are well characterized by an anisotropic Gaussian con
mation, elongated along the director. The equilibrium dis
bution of the end-to-end vector can be written in the form

Peq~r!5N821expF2
d

2V8
r•~ I2aQ!•rG , ~10!

wherea is the degree of chain anisotropy and

Qi j 5Q0S d i j 2
1

d
ninj D ~11!

is the orientational order parameter withn being the director.
We consider a system deep in the nematic phase and
Q051; the state of orientation is completely specified by t
director. The coupling constanta is expressed in terms of th
parameters used in@12# as

a5
l i2l '

~121/d!l i1~1/d!l '

. ~12!

Note thata does not exceedd/(d21), the value attained in
the anisotropic limitl i /l '→`. An advantage of the affine
deformation model is that it can describe arbitrary crossli
ing conditions; the networks can be fabricated either in
isotropic or the nematic phase. First we consider netwo
originally crosslinked in the isotropic phase, and we sh
treat the case of anisotropic crosslinking in Sec. V. The r
dom stresses are now readily incorporated into the orig
model. For the case of isotropic crosslinking, the initial cha
conformation can be described by Eq.~5!, with Eqs.~8! and
~9!. Substituting Eqs.~5! and~10! into Eq.~3!, and dropping
terms independent ofL and/orQ, we arrive at the elastic free
energy,

Fel5
m

2E dr Tr@~ I1R!•LT
•~ I2aQ!•L2I # ~13!

with m5kBTn0(V/V8). Here we subtracted a constant
thatFel vanishes whenL5I anda5b50. We also replaced
*dr0 with *dr , assuming an incompressible network a
imposing the local constraint,
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detL51. ~14!

We decompose the elastic free energy into proper and d
der contributions asFel5Fel

P1Fel
D , where, by definition, the

former is given by formally settingR50 in the right-hand
side of Eq.~13!, and

Fel
D5

m

2E dr Tr@R•LT
•~ I2aQ!•L#. ~15!

The total free energy of the system is written asF5Fel
1FF , whereFF is the Frank free energy, for which we us
the so-called one-constant approximation@39#,

FF5
K

2E dr ~¹n!2. ~16!

We assume that the average deformationL̄ i j is a uniaxial
strain along thex axis, parametrized by the elongation rat
l, as

L̄5lexex1l21/(d21)~ I2exex!. ~17!

The internal displacement is defined as the deviation fr
the average deformation,

u5r2L̄•r0 , ~18!

with which the deformation tensor is expressed as

L i j 5L̄k j~dki1]kui ! ~19!

~here and hereafter, we imply summation over repeated i
cesi, j, k, l, andm).

In the absence of quenched disorder, the elastic free
ergy is minimized atl5lm andu50, where

lm5F 11~1/d!a

12~121/d!a G (d21)/2d

~20!

is the ratio of the spontaneous elongation induced by
isotropic-nematic transition@7,12# ~see Fig. 2!. However, if
the random stresses are strong enough, the long-range o
tational order is destroyed and the ground state of the sys
is shifted to a polydomain state withl51, as we shall see
Hereafter and throughout the paper, we regardl as an exter-
nally controlled parameter.

FIG. 2. Spontaneous macroscopic elongation of an ideal~clean!
nematic gel, induced by the IN transition.
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e
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C. Effective free energy

In this subsection, we derive the effective free energy
the mechanical equilibrium state under the constraintl51,
and discuss its physical consequences. Substituting
~17!, ~18! and~19! into Eq.~13!, expanding it with respect to
¹u, and retaining a bilinear form in¹u, R, andQ, we have

Felul515
m

2E dr @~] iuj !
212~Ri j 2aQi j !] iuj2aRi j Qi j #.

~21!

From this we eliminate the displacement field using the m
chanical equilibrium condition,

dFel

du
50, ~22!

and the incompressibility condition~23!, which to the lowest
order in¹u reads

¹•u50. ~23!

After a straightforward calculation following the procedu
described in@31#, we obtain an effective elastic free energ
which is correct to the quadratic order ina, b, andb8, as

F̃elul5152
m

2Eq
$u~ I2q̂q̂!•@ q̂•R~q!2aq̂•Q~q!#u2

1aR~q!:Q~2q!%, ~24!

where q̂5q/uqu and *q5*(2p)2ddq ~the tilde is to put to
express the effective nature of the free energy!. The proper
contribution to the free energy is given by

F̃el
P52

ma2

2 E
q
u~ I2q̂q̂!•@ q̂•Q~q!#u2. ~25!

In the real space, Eq.~25! is rewritten in the form of a two-
body long-range interaction, as

F̃el
P52

ma2

2 E drE dr 8@Qik~r !•] i] jG1~r2r 8!•Qjk~r 8!

1Qi j ~r !•] i] j]k] lG2~r2r 8!•Qkl~r 8!#, ~26!

whereGn(r ) ~n51,2) are the Green functions defined by

~¹2!nGn~r !52d~r !, ~27!

Gn~r→`!50. ~28!

In a similar manner, the disorder part of the free energy
written as



re
th
s

e

us
n
e
lo
en

e
n
a
fo
ht

-

g
on
o

ra
b

le

gy

ld

f
n-
in
-

e-
by

3.
he
ns

on.
et-
ain
rd,

the
nt
lar
the
e-

in

te
les
ing
n

PRE 62 5123SOFT AND NONSOFT STRUCTURAL TRANSITIONS IN . . .
F̃el
D5maE drE dr 8

3$Rik~r !•@2 1
2 d i j d~r2r 8!1] i] jG1~r2r 8!#•Qjk~r 8!

1Ri j ~r !•] i] j]k] lG2~r2r 8!•Qkl~r 8!%1const. ~29!

In a given direction ofR5r2r 8, the kernels] i] jG1 and
] i] j]k] lG2 in Eqs.~26! and~29! decay in proportion toR2d.

Let us discuss the physical meaning of the effective f
energy. First we consider the disorder part, neglecting
proper elastic interaction for the moment. If we decompo
the random stress into the dilatational partRkkd i j /d and the
shear~traceless! part Ri j 2Rkkd i j /d, the former makes no
contribution to the free energy~21! because of Eq.~23! and
the tracelessness ofQ. Thus, only the shear portion of th
random stresses~whose strength is represented byb) is rel-
evant, at least in the bilinear order. It is intuitively obvio
that a mere volume change does not create any prefere
director orientation, while anisotropic strain does. As se
from Eq. ~29!, the random stresses both locally and non
cally act on the director field. The classical scaling argum
by Imry and Ma @40# tells that arbitrary weak random
stresses destroy the long-range orientation order in dim
sions lower than 4. Although the original Imry-Ma argume
assumes an uncorrelated random field, it is easy to see th
also holds in the present case, including the scaling law
the domain size. To see this, it is useful to rewrite the rig
hand side of Eq.~29! into the form ma*dr P(r ):Q(r ),
where the effective random fieldP has a long-range correla
tion schematically represented as

^Pi j ~r !Pkl~r 8!&5jR
d@P i jkl d~rÀr 8!1P i jkl8 urÀr 8u2d#,

~30!

whereP i jkl depends on the direction ofrÀr 8 but not on its
magnitude. Since bothP i jkl and P i jkl are dimensionless
quantities, there appears no additional characteristic len
that affects the Imry-Ma scaling of disorder free energy c
tained per domain. The domain size or the orientational c
relation length, which we denote byj, is determined by a
balance between the effects of random stresses and F
elasticity. The effective strength of disorder is expressed
the dimensionless parameter

D5
mab

K
jR

2 . ~31!

According to the Imry-Ma argument, the domain size sca
as j/jR}D2/(d24) in the weak disorder regionD!1. For a
strong disorderD*1, we should havej;jR and optimiza-
tion of the director field will reduce the disorder free-ener
density roughly bymab.

Next we turn to the proper elastic interaction. It shou
play only a secondary role in selecting the domain sizej
because of the invariance of Eq.~25! against a change o
scaleq→const3q. However, it creates a characteristic a
isotropy in the orientational correlation. We see this first
the two-dimensional~2D! case. In 2D, the orientational con
figuration is specified by the director’s azimuthal angleu
5u(r ), as
e
e
e

tial
n
-
t

n-
t
t it
r
-

th
-
r-

nk
y

s

n5~cosu,sinu!, ~32!

or, equivalently,

Q5
1

2 Fcos 2u sin 2u

sin 2u 2cos 2uG . ~33!

A straightforward calculation reduces Eq.~26! to

F̃el
P5

ma2

16p E drE dr 8
1

R2
cos@2„u~r !2c…12„u~r 8!2c…#,

~34!

where c is the azimuthal angle of R5r2r 8
5uRu(cosc,sinc). From the angle dependence of the int
grand, we expect that the above free energy is minimized
a ‘‘checkered’’ domain configuration as depicted in Fig.
Correlation in directions parallel and perpendicular to t
local director is suppressed, while those in oblique directio
are enhanced. It has the following simple interpretati
Upon the isotropic-nematic transition, each part of the n
work tends to elongate along the local director. The dom
in the center of the figure pushes the top neighbor upwa
pulls the left neighbor rightward, and so on. To reduce
mechanical conflict without violating the global constrai
l51, the top and left domains are reoriented perpendicu
to the central one. This domain reconfiguration enables
IN transition-induced elongation along the local director, d
spite spatial inhomogeneity.

The same picture holds for orientational correlation
three dimensions. In 3D, Eq.~26! becomes

F̃el
P5

ma2

16p E drE dr 8
1

R3
g~n,n8,R̂!, ~35!

g~n,n8,R̂!52
5

3
14~n•n8!21~n•R̂!21~n8•R̂!2

218~n•n8!~n•R̂!~n8•R̂!115~n•R̂!2~n8•R̂!2,

~36!

FIG. 3. Preferred local director configuration. Ellipses indica
the anisotropy of local strain. The ‘‘checkered’’ structure enab
each domain to elongate along the local director, without violat
the global constraintl51. Note that the proper elastic interactio
does not select the characteristic size of the pattern.
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5124 PRE 62NARIYA UCHIDA
wheren5n(r ), n85n(r 8) andR̂5R/uRu. Correlation in the
direction parallel to the director is suppressed as in the
case, which is known by observing that the function

g~n,n8,n!52 2
3 12~n•n8!2 ~37!

takes its minimum whenn'n8.
The domain reconfiguration due to the proper elastic

teraction is suppressed by the Frank elasticity at wavelen
shorter than

jc5A K

ma2
. ~38!

Thus we have three characteristic length scales:j, jR , and
jc . The observed domain sizej is typically 12101mm,
while we estimatejc to be 10 nm for typical experimenta
valuesK510211 J/m,m5105 J/m3, anda51.0. There is a
substantial gap betweenj and jc , where the proper elasti
interaction plays a dominant role. The Frank free-ene
density f F ~averaged over space! scales asf F; f el

P(jc /j)2

! f el
P;ma2. The domain sizej can be cast into a scalin

form,

j

jR
5JS D,

jc

jR
D . ~39!

AlthoughJ is a highly nontrivial function, it can be numer
cally obtainable unlessD is very small ~or unlessj/jR is
very large!, as we see in Sec. III. We have a trial estima
D;1 if we assumeb;0.01 andjR;100 nm in addition to
the above values ofK, m, anda. Of course, this estimate o
D is quite uncertain because the magnitudes ofb and jR
should depend on the kinetics of the crosslinking proce
quality of the solvent, etc. Our point here is that it is n
unreasonable to have a moderately strong disorder in
presence of submicron-scale network heterogeneities, w
is considered ubiquitous.

D. Mechanical response

Now we proceed to discuss the mechanical response
ing the polydomain-monodomain transition. To do so, it
useful to examine again the polydomain state atl51 and in
2D. The harmonic free energy~25! can be rewritten as@31#

F̃el
P52

ma2

2 E
q
uQ1~q!u2, ~40!

Q1~q!52q̂xq̂yQxx~q!2~ q̂x
22q̂y

2!Qxy~q!

5sin 2w Qxx~q!2cos 2w Qxy~q!, ~41!

where w is the azimuthal angle of the wave vector,q
5uqu(cosw,sinw). Complementary toQ1(q) is the variable
defined by
D

-
hs

y

s,
t
he
ch

r-

Q2~q!5~ q̂x
22q̂y

2!Qxx~q!12q̂xq̂yQxy~q!

5cos 2wQxx~q!1sin 2wQxy~q!. ~42!

Note thatQ1(q) andQ2(q) constitute a set of normal mode
and satisfy

uQ1~q!u21uQ2~q!u25uQxx~q!u21uQxy~q!u2, ~43!

or

Q1~r !21Q2~r !25Qxx~r !21Qxy~r !25 1
4 , ~44!

whereQa(r ) ~a51,2) are the inverse Fourier transform
Qa(q). To reduce the free energy~40!, there arises an asym
metry Q1(r )2.Q2(r )2. In the limit where ma2 is much
larger than the disorder and Frank contributions to the fr
energy density, we expect from Eq.~44! to have

Q1~r !25 1
4 , Q2~r !250, ~45!

which indeed is numerically confirmed@32#. In this limit, the
elastic free-energy density is given by

f el5
ma2

8
, ~46!

as seen from Eq.~40!. To the second order ina, it is equal to
the free energy in the monodomain state withl5lm , as we
can easily check by substituting Eq.~20! into Eq. ~13! and
expanding it with respect toa. Thus we conclude that the
elastic free energy change accompanied with the PM tra
tion is of O(a3), and the macroscopic stress averaged o
the region 1,l,lm , or

f el~l5lm!2 f el~l51!

lm21
, ~47!

is a quantity ofO(a2).
To see the origin of the soft response, it is useful to lo

at the local elastic stress tensor, which is given in the h
monic approximation~21! as @41#

s i j 5m~] iuj1] jui2aQi j 1Ri j !. ~48!

Consider its variances i j
2 . In the absence of random stresse

we have

E dr s i j
2 54mFel1m2a2E dr Qi j

2

5m2a2E dr ~Qi j
2 22Q1

2!52m2a2E dr Q2
2 ,

~49!

which vanishes from Eq.~45!. @Here we utilized the relation
05detL215¹•u1 1

2 (¹•u)22 1
2 (] iuj )(] jui)1O„(¹u)3

…

to have~] iuj )(] jui)5O(a3) in the mechanical equilibrium
We neglected this higher-order term in the expansion
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s i j
2 .# This means that each part of the system is stretc

along the local director by 11a/41O(a2);lm times. This
local elongation, realized by the checkered polydom
structure, reduces the free energy close to its absolute m
mum.

III. NUMERICAL SIMULATION

To further study the nonlinear mechanical response
the effect of random disorder, we resort to numerical sim
lation by the continuum model. We utilize two different n
merical schemes, one for the polydomain state in mechan
equilibrium atl51 and another for the PM transition an
dynamical effects. A two-dimensional system is assumed
computational advantage. All the simulations below are p
formed on anN3N square lattice withN5128 unless oth-
erwise stated. The grid spacing is chosen to be the un
length. Periodic boundary conditions are imposed onn(r )
andu(r ), while the average strainl is externally controlled.

A. Polydomain state

First we study the polydomain state in complete mecha
cal equilibrium and with no average strain~l51). To this
end, we assume the harmonic free energy~21! and solve the
linear equations~22! and ~23! using the fast Fourier trans
form. To minimize the free energy, we adapted a varian
the simulated annealing method@42#. The orientational order
parameter is evolved according to a Langevin equation,

]n

]t
5Gn ~ I2nn!•S 2

dF

dn
1hD , ~50!

whereGn is a constant andh is a ‘‘thermal’’ noise satisfying

^h~r ,t !h~r 8,t8!&5h0
2 I•d~r2r 8!d~ t2t8! ~51!

and Gaussian statistics. The noise strengthh0 is gradually
reduced to zero until the end of each run. To be precise,
decreaseh0 to zero at a constant rate in the former half o
run, and seth050 in the latter half. The initial noise strengt
and the annealing rate are chosen so that two different in
configurations, one with a random and another with a hom
geneous director field, lead to indistinguishable results
the macroscopic quantities such as correlation function,
erage orientation, and free-energy densities. As a standar
of static parameters we choose

m5400, a50.2, b50.025, jR51, K54, ~52!

for which jc50.5 andD50.5. We integrated Eq.~50! using
the Euler scheme with time incrementDt51 per step. A
typical run consisted of 53104 time steps. Longer runs did
not make an observable difference in the macroscopic qu
tities.

First we consider the orientational correlation function

G~R!5^Qi j ~r !Qi j ~r1R!&, ~53!

which is a function only of distance. We define the corre
tion lengthj through
d

n
ni-

d
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f

e
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-
r

v-
set

n-

-

G~j!

G~0!
5

1

2
. ~54!

For each parameter set, we took a statistical average ove
samples. The data are shown in Fig. 4. The decay ofG(R) is
nearly exponential for strong disorder and faster than ex
nential for weak disorder. This qualitative tendency agre
with previous results for the 2D random-fieldXY model
@43–45#. The correlation length is a rapidly decreasing fun
tion of the effective disorder strength,D. The dependence is
roughly exponential, also in agreement with previous res
for the XY model @43,45#. In the same figure we show th
dependence ofj on ma2, which is the measure of elasti
interaction. Although the dependence is weak, the pro
elastic interaction has an effect of increasing the correla
length. This is related to the enhancement of correlation
directions oblique to the local director, depicted in Fig. 3.
order to quantify the director-relative correlation, we defi
the function

FIG. 4. Top: Correlation functionG(R) for different disorder
strengths. Middle: Correlation length versus disorder strength
the top and middle plots we fixma2516. Bottom: Correlation
length versus strength of elastic interaction. The disorder streng
fixed ~D50.5).
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H~R!5^Qi j ~r ! Qi j @r1U~r !•R#&, ~55!

whereU(r ) is a matrix of rotation that mapsn(r ) to ex , or,
explicitly,

U5Fcosu 2sinu

sinu cosu G . ~56!

By definition,H(x,0) andH(0,y), respectively, describe th
correlation in directions parallel and perpendicular to the
cal director. The data for the standard parameter are plo
in Fig. 5. We see that the correlation is long-ranged in a
specific direction, and the exponential-like decay in Fig

FIG. 5. Top: Director-relative correlation functionH(R), plot-
ted in the regionj,R,5j. The unit of length is the grid sizeDx.
Middle: Depolarized light scattering intensity^uQxy(q)u2&. Shown
is the region215,qx,15 and215,qy,15, where the unit of
wave number is 2p/(NDx). Bottom: Snapshots of the orientation
order parameter fieldQxy(r )5sin 2u. The value ofQxy is positive
in white regions and negative in black regions.
-
ed
y

should be considered as a result of mutual cancellation
positive and negative correlation by taking the angular av
age.

A real-space snapshot of the order-parameter fieldQxy is
also given in Fig. 5. As the gray scale shows, the cont
Qxy50 preferentially lies in the horizontal~x! and vertical
~y! directions. This corresponds to the checkered dom
structure in Fig. 3~note that the gray scale is chosen so th
the director is oblique to the horizontal axis in the brighte
and darkest regions!. More precisely, the checkered pattern
found on many different length scales, which is a natu
consequence of the fact that the elastic interaction ene
~24! is scale-independent.

An experimentally accessible way to characterize the
isotropic director correlation is the polarized light scatterin
In a weakly inhomogeneous state, the depolarized~HV! light
scattering intensity is given by

I ~q!5^uQxy~q!u2&, ~57!

except for aq-independent prefactor. According to Ref.@16#,
the above formula holds even in a highly inhomogeneo
state, if one assumes a two-dimensional configuration@see
Eq. ~2! in the reference#. Our numerical data are shown i
Fig. 5. The intensity~57! is expressed in terms ofQ1 andQ2
as I (q)5cosw2^uQ1(q)u2&1sinw2^uQ2(q)u2&, and the asym-
metry Q1.Q2 explains the enhanced scattering onqx- and
qy- axes@31#.

Note that the peak is located at a small but finite wa
number, contrary to what is expected from the nonconser
nature of the orientational order parameter. In fact, we fin
to be a finite-size effect, and the peak wave number shri
to zero as the system sizeN is taken to infinity, leaving a
singular minimum at the origin. To see this, we have co
puted the circularly averaged structure factor,

S~q!5E
0

2p

dwuQi j ~q!u2&, ~58!

for N564, 128, and 256 systems, and found a peak in
region ~2p/N),q,2(2p/N) in every case. The origin o
the singular minimum atq50 is explained as follows. Be
cause of the periodic boundary condition onu, the spatial
average¹u should completely vanish. This constraint su
presses the formation of the checkered pattern with the ch
size larger thanN/2.

B. Polydomain-monodomain transition

Next we study the PM transition using the nonlinear el
tic free energy~13!. We found that complete minimization o
the free energy takes very much computation time. There
we decided to take a more empirical approach: with a sim
dynamical model, we strained the system continuously, w
out waiting until complete equilibration. Fortunately, th
stress-strain relation thus obtained is equilibrated to a g
degree, because of fast relaxation of the rubber-elastic
energy. On the other hand, the domain structure exhibi
slow coarsening, which we study in the absence of exte
strain.
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Our dynamical model consists of a set of equations t
describe the evolution of nonconserved order parameter
the simplest manner, namely,

]n

]t
52Gn ~ I2nn!•

dF

dn
~59!

and

]u

]t
52Gu

dF

du
. ~60!

Instead of imposing the strict incompressibility conditio
~23!, we penalized the local volume change by adding
artificial potentialFv to the free energy. By taking it in the
form Fv5 1

2 *dr @a0(detL21)21a1(detL21)4# and choos-
ing appropriate values of the constantsa0 and a1, we kept
detL in the region@0.99,1.01# throughout the runs.

We integrated Eqs.~59! and ~60! using the Euler schem
with Gn50.2, Gu50.02, andDt51. A typical set of static
parameters is identical to that given by Eq.~52!.

To prepare a polydomain state, we set sitewise rand
numbers toQ and u as the initial condition, and integrate

FIG. 6. Top: Strain-stress~l vs m21smacro) and strain-
orientation~l vs S) curves fora50.2 ~lm51.051). Diamonds~
)
and crosses~1) are for the loading and unloading processes,
spectively. Bottom: Free-energy densities~for the loading process!.
t
in

n

m

Eqs.~59! and~60! for 53104 time steps withl51. Then we
increasedl at a constant ratedl/dt5131025 to induce the
PM transition. To check hysteresis, finally we decreasedl
back to unity at the ratedl/dt52131026.

Plotted in Fig. 6 are the scaled macroscopic elastic st
m21smacro5m21(] f el /]l) and the mean orientationS
5cos 2u52Qxx as functions ofl. We see from the figure tha
the elastic stress is vanishingly small and the orientation
early increases in the polydomain region 1,l,lm
(51.05). The stress shows a linear rise in the monodom
region l.lm , where the orientation is nearly saturated
the maximum,S51. While the strain-orientation curve has
small hysteresis, the strain-stress curve is almost comple
reversible.

The smallness of the hysteresis manifests an impor
difference between the present system and random an
ropy magnets under magnetic field. In the latter, the mac
scopic orientational order is broken solely by a random fie
In contrast, in the present model, the monodomain stat
unstable to a strain-mediated director buckling forl,lm ,

-

FIG. 7. Strain-stress and strain-orientation curves fora50.2,
0.4, 0.8, and 1.2 from the left to right. Corresponding values oflm

are 1.05, 1.11, 1.24, and 1.41, respectively. The parametersma2

516 andD50.5 are common to all cases.

FIG. 8. Histogram of the elastic free energy contained in a s
Distributions for casesl51, 1.03, 1.05, and 1.07 are shown. Th
first three are indistinguishable from each other.
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even when there is no quenched disorder. This instabi
which will be discussed in Sec. IV in detail, makes the P
transition almost reversible.

The free-energy densities are also shown in Fig. 6. B
the proper and disorder parts of the rubber-elastic free en
change little in the regionl,lm . The latter curve has a
slightly positive gradient. The situation is more subtle for t
former. Its gradient is slightly positive in the figure, an
turns to slightly negative for a smaller disorder streng
However, in the absence of random stresses and atl51, we
had four domains whose sizes are limited by the system s
and the domain boundaries raise the elastic free energy.
cause of this finite-size effect, we cannot exactly tell the s
of the proper elastic stress in the macroscopic limit. We c
not exclude the possibility that the macroscopic stress c
pletely vanishes in the limit of weak disorder.

The strain-stress and strain-orientation curves for lar
values ofa are given in Fig. 7. Each curve shows a sha
crossover aroundl5lm(a). The elastic stress in the poly
domain region is vanishingly small even for large couplin
For any value ofa studied, the changes of the proper a
disorder elastic free-energy densities,u f el

P(l5lm)2 f el
P(l

51)u and u f el
D(l5lm)2 f el

D(l51)u, were smaller than 0.3%

FIG. 9. Real-space snapshots of the fieldQxy(r ).
y,

h
gy

.

e,
e-
n
-
-

r

.

percent ofma2. We find essentially noa-dependence of the
macroscopic stress in the polydomain region.

Shown in Fig. 8 is the histogram of the elastic free ene
contained in a lattice site. The distribution is fairly sharp a
little changed by stretching forl,lm , implying that the
free energy is homogeneously minimized in the polydom
state. Real space snapshots of the domain morphology
shown in Fig. 9. Pinned defects are observed just below
thresholdl5lm , while we find no defects remaining in th
monodomain state.

The depolarized scattering intensity is shown in Fig. 10
has a minimum atq50 and develops four peaks at finit
wave numbers. As we shall see in the next subsection,
peaks move toward the origin as the true equilibrium is
proached and the domains coarsen. Here we concentra
the effect of stretching. The peak intensity first increases
then decreases as a function ofl. Under stretching along the
x axis, the peaks on theqx axis are more enhanced than tho
on theqy axis. The shift of the peak wave number by stretc
ing is very small and difficult to estimate. By our choice
the stretching rate, the PM transition was completed in
3103 time steps, much before a significant coarsening
occur.

C. Slow structural relaxation

Now we turn to dynamical effects. First let us discuss t
conditions under which Eqs.~59! and ~60! are most reason
able as a model of dynamic evolution, not only as an art
cial scheme of functional minimization. First, Eq.~60! means
that the velocity ]u/]t is proportional to the force
2dF/du. This applies to the motion of a network in a vis
cous solvent@46#, where we have a straightforward analog
to D’arcy’s law in porous media. On the other hand, in d
elastomers, there arises a viscous stress due to intranet
friction, which is proportional to¹(]u/]t). This is not ac-
counted for in Eq.~60!. Thus we consider that the dynam
model is more appropriate to swollen gels than to elastom
Second, Eqs.~59! and ~60! neglect dynamical coupling be
tween the order parameters, i.e., the nondiagonal part of
Onsager coefficient matrix. This does not matter if the d
namics of the orientational order parameter is dynamica
‘‘slaved’’ to the displacement field, which we expect to b
the case. In fact, if the constituent polymer of the gel is n
rigid, Gn

21 is of the order of the viscosity of low-molecular
weight fluids,h. On the other hand, the friction between th
20
FIG. 10. Depolarized scattering intensity~in arbitrary units! at l51 ,1.03, and 1.05, from the left to right. Statistical average over
samples is taken for each case. Shown is the region230,qx,30 and230,qy,30. Note the difference in intensity.
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network and solvent rendersGu
21 to be of the order ofh/ l 2,

where l is the mesh size of the network@29,47#. Thus, the
characteristic relaxation time of the strain at the scale
domain size is;(j/ l )2(@1) times larger than that ofQ.

Evolution of the structure factorS(q) @as defined by Eq.
~58!# is shown in Fig. 11. The peak wave number decrea
and the peak intensity increases as a function of time. A
shown in the figure is the structure factor at complete m
chanical equilibrium, which is obtained by the numeric
scheme used in Sec. III A. The correlation lengthj and the
inverse of the peak wave numberq0 are plotted in the middle
of Fig. 12. In the time region 13103,t,33105, the former
is well fitted by a power lawj(t)}te with e50.2360.02,
and the latter grows almost in parallel to the former.

The Frank and rubber-elastic free energies are plotte
functions of time in Fig. 12. While the elastic free ener
changes little after an early stage of aroundt5103 time
steps, the Frank energy densityf F shows a slow and continu
ous decrease, which is approximately described by a po
law f F}t2e8 in the region 13103,t,33105, with e8
50.2260.03.

Presently we have no explanation for the good fits ofj(t)
and f F(t) by power laws. We point out that the values ofe
and e8 are much smaller than the corresponding expone
for the 2D nonconservedXY model without quenched disor
der, which equal 0.5 and 1.0 from a simple scaling argum
@48#. The naive scaling relatione852e is also broken here
which is not at all surprising if we consider the presence
quenched disorder@49#. We should also stress that the fin
equilibrium values ofj and f F are finite. Preliminary study
by a longer run without statistics finds a crossover from

FIG. 11. Circularly averaged structure factorS(q) ~in arbitrary
unit! at t523104, 83104, and 323104 steps and in mechanica
equilibrium. Statistical average over 20 samples is taken.
f
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power-law-type kinetics to a slower one att;13106 steps.
The above results show that the relaxation process ca

decomposed into three characteristic stages.~i! The quench
into the nematic phase from the isotropic phase produ
microscopic textures, which coarsen to reduce both
rubber-elastic and Frank free energies. After the characte
tic domain size reachesjc , anisotropic domain reconfigura
tion on this scale follows. The rubber-elastic free energy
almost completely minimized at this early stage, because
the scale independence of the proper elastic interaction~24!.
~ii ! The ‘‘checkered’’ domain structure further coarsens
reduce the Frank free energy. The domain sizej and the
peak wavelength 2p/q0 grow in parallel to each other.~iii !
The domain size converges to a finite equilibrium valu
while the anisotropic domain reconfiguration proceeds
larger scales@ limt→`q0(t)50#.

IV. FLUCTUATION IN THE MONODOMAIN STATE

A. Critical enhancement of soft fluctuation by disorder—
Golubović-Lubensky prediction

Recall that, if there is no quenched disorder, the grou
state of the system is the macroscopically elongated s
with l5lm and u50. In this state, there are so-called so
modes of director fluctuation, which do not accompany a
change in the rubber-elastic free energy@9–11#. The pres-
ence of the soft modes implies that a homogeneous dire
configuration becomes unstable forl,lm ; when we com-
press the gel along the optical axis, the director ‘‘buckles’’
partially cancel the rise of elastic free energy by compr
sion. The result of the preceding section means that this
stability is almost completely soft even for large deform
tions. In this section, we look at the monodomain regionl
>lm and analyze the director fluctuation modes in a h
monic level. In a general point of view, our analysis gives
specific demonstration of the prediction by Golubovic´ and
Lubensky@9# on a class of elastic systems that undergo
spontaneous shear deformation~‘‘anisotropic glasses’’ in
their terminology!. They have shown that such material has
soft mode of shear deformation in its ground state, and
soft fluctuation is critically enhanced by random stresses
the language of the present system, their prediction co
ponds to the statement that the director fluctuation at
critical point l5lm is strongly enhanced by quenched d
order and satisfieŝudn(q)u2&}q24. Nonetheless, it was no
fully confirmed because of a breakdown of the harmo
approximation at the critical point,l5lm . Also, the model
e

FIG. 12. Left: Evolution of the
correlation lengthj and inverse
peak wave numberq0

21. Right:
Dynamic relaxation of Frank and
elastic free energies. Plotted ar
data from 20 individual runs.
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used in @9# is quite phenomenological, and a quantitati
assessment of the fluctuation enhancement is lacking. H
we extend the analysis to arbitrary values ofl, and discuss
the practical possibility of finding disorder-enhanced fluctu
tions.

The director is decomposed into a homogeneous part
a small deviation, as

n~r !5ex1dn~r !. ~61!

Expanding the basic free energy~13! with respect todn and
u, and then eliminating the elastic field using the mechan
equilibrium condition, we obtain an effective free energy
terms ofdn. An outline of the calculation is given in Appen
dix A. For the three-dimensional case, the result is

F̃el5
ma

l E
q
$ 1

2 A1~l,q̂! udn~q!u21 1
2 A2~l,q̂! uq̂•dn~q!u2

2Rix8 ~q!dni~2q!2B1~l,q̂!q̂iRix8 ~q!@ q̂•dn~2q!#

2B2~l,q̂!@ q̂•R8~q!•dn~2q!#2B3~l,q̂!@R8~q!:q̂q̂#

3@ q̂•dn~2q!#%, ~62!

A1~l,q̂!5l3212
3a

314a

l6q̂x
2

11~l321!q̂x
2

, ~63!

A2~l,q̂!

5

3a~314a!

31a

@~31a!/~322a!1l3#2q̂x
2

31a~21q̂x
2!

2
3a

322a

11~l321!q̂x
2

,

~64!

B1~l,q̂!5

11
3a

31a S 31a

322a
1l3D q̂x

2

11~l321!q̂x
2

, ~65!

B2~l,q̂!5
l3q̂x

11~l321!q̂x
2

, ~66!

B3~l,q̂!52

S 31a

322a
1l3D q̂x

11~l321!q̂x
2

, ~67!

Ri j8 ~q!5L̄ ikL̄ j l Rkl~q!, ~68!

which is correct to the bilinear order indn andR ~we neglect
terms independent ofdn).

In the absence of quenched disorder, the integrand in
~62! is of the form 1

2 (A1I1A2q̂q̂):dn(q)dn(2q). It is con-
re

-

nd

al

q.

venient to introduce two unit vectorse15q3ex /uq3exu and
e25e13ex @39#, with which the integrand becomes

1

2
A1ue1•dn~q!u21 1

2 @A11A2~12q̂x
2!#ue2•dn~q!u2.

~69!

At l5lm , the coefficientA1 takes its minimum value 0 for
qiex , while A11A2(12q̂x

2) is minimized and vanishes bot
on the lineqiex and in the planeq'ex . These correspond to
the soft modes. Similar results have been obtained by O
sted @11# for monodomain elastomers crosslinked in t
nematic phase and without external strain.

The random stresses shift the ground state to an inho
geneous state,dn5dnR andu5uR . The frozen director de-
viation dnR is obtained by minimizing the total free energ
F̃el1FF with respect todn, as

dnR,i~q!5
1

A11K8q2 FRix8 ~q!1B2 q̂ jRi j8 ~q!

1S B12
A2~11B1!

A11A21K8q2D q̂i q̂ jRjx8 ~q!

1S B32
A2~B21B3!

A11A21K8q2D q̂i@ q̂q̂:R8~q!#G ,

~70!

where we have introduced a scaled Frank constant,

K85
Kl

ma
. ~71!

At the critical pointl5lm , the quantityA11A2 appearing
in Eq. ~70! vanishes for q'ex . Hence, in the long-
wavelength limitq→0, we havednR(q)}q22 in the soft
directionsq'ex and qiex . This means a divergence of th
real space amplitudêudnR(r )u2& and breakdown of the har
monic approximation, as pointed out in Ref.@9#. Severe is
the divergence of the frozen elastic fielduR , which is related
to dnR through the mechanical equilibrium condition~A2!.
At l5lm , it behaves aŝuuR(q)u2&}q26 in the soft direc-
tions, and^uuR(r )u2& diverges. However, these divergenc
disappear forl.lm , where the excess stretching acts a
stabilizing field. Now we consider this region. The conditio
for the harmonic approximation to be valid is^udnR(r )u2&
!1, which implieŝ u¹uR(r )u2&!a2. To assess the conditio
by order estimate, we concentrate on the planeq'ex , from
which arises the most significant contribution to the re
space amplitude,

^udnR~r !u2&5
1

~system8s volume!
E

q
^udnR~q!u2&. ~72!

On that plane, the strongestq dependence ofdnR(q) comes
from a factor~D1K8q2)21, where
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D5D~l!5@A1~l,q̂!1A2~l,q̂!#u q̂x50 ~73!

is the measure of excess stretching. Note thatD}l2lm for
l2lm!1. A saddle-point approximation around the pla
yields

^udnR~r !u2&;E b2jR
3q2dq

~D1K8q2!3/2

35 ;
b2jR

3

K83/2
lnS K8qmax

2

D D ~D!K8qmax
2 !,

;
b2jR

3

K83/2 S K8qmax
2

D D 3/2

~D@K8qmax
2 !,

~74!

where qmax is the upper cutoff wave number. We ma
roughly identify 2p/qmax with the network mesh size,l
;(kBT/m)1/3. Using typical experimental valuesm5105

J/m3, K510211 J/m, a51.0, andT5300 K, we haveAK8
510 nm andK8qmax

2 ;1. For D&K8qmax
2 and except in the

close vicinity of the criticality,D50, the amplitude only
weakly depends on the elongation ratio. In this region,
harmonic approximation is valid if and only if

b2jR
3

K83/2
!1, ~75!

which is satisfied when we setjR;102 nm andb;0.01 as a
trial.

The director exhibits a thermal fluctuation around the
homogeneous ground state. Its amplitude is not affected
the quenched randomness, at least within the harmonic
culation. The total fluctuation amplitude is given by

P(a)~q!5^uea•dn~q!u2&5PT
(a)~q!1PR

(a)~q!, ~76!

PT
(a)~q!5

kBTl

ma

1

A11da2~12q̂x
2!A21K8q2

, ~77!

PR
(a)~q!5^uea•dnR~q!u2&, ~78!

wherea51,2 andPT
(a) and PR

(a) are the thermal and froze
contributions, respectively. Let us compare the two contri
tions. To be explicit, we comparePT

(2)(q) andPR
(2)(q) on the

planeq'ex . There the ratioPR
(2)/PT

(2) is controlled by a fac-
tor of the formDc /(D1K8q2), where

Dc5
mab2jR

3

kBT
~79!

defines a crossover point. In the regionD&Dc , the disorder
part of the fluctuation dominates the thermal part at lo
wavelengths. We estimateDc;1023 using the above-
mentioned values, for which the crossover lengthAK8/Dc
e

-
by
al-

-

g

;1022103 nm is around or below the wavelength of visib
light. The amplitudes fora50.2 andl/lm51.001 are plot-
ted in Fig. 13. We see that the anisotropy of the scatter
pattern is not much affected by the quenched disorder.

The director fluctuation amplitudes are closely related
polarized light scattering intensity@39#. By comparing ex-
perimental results to the above calculation, we may extr
information on the network heterogeneity. In particular,
the macroscopic orientation is not saturated in the mono
main state, it means the presence of large-scale quen
strains that do not meet the condition~75!. For instance, in
an optical study of a swollen monodomain gel by Cha
et al. @50#, speckles on the few-micrometer scale are o
served, which is attributed to heterogeneities as we cons
here. We hope that the scattering intensity will be measu
as a function of applied strain. Another origin of large-sca
heterogeneity will be discussed in Sec. V.

B. Effect of fractal heterogeneity

Up to now we assumed that the network heterogeneity
a single characteristic sizejR and the random stresses lac
correlation beyond this length. This is a good approximat
for densely crosslinked elastomers and gels that are far
yond the gel point. However, gels at or close to the gel po
are better characterized by a fractal network structure
deduced from the percolation theory@33,51,52# and as ex-
perimentally confirmed@53,54#. Since the statistics of the
heterogeneity strongly affect the long-wavelength behav
of the structure factor, it is worthwhile to generalize the r
sults of the previous sections to include a class of frac
heterogeneity. The random stresses are now assumed to

^Ri j ~q!Rkl~2q!&5jR
2d2dFqd2dF

3Fb2S d ikd j l 1d i l d jk2
2

d
d i j dklD

1b82d i j dklG , ~80!

FIG. 13. Square amplitudes of director fluctuation~in arbitrary
unit!. PR

(1) andPR
(2) are multiplied by a common prefactor. Shown

the region230,K81/2qx,30 and230,K81/2q•e2,30. Note the
stronguqu dependence of the disorder contribution.
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which reduces to Eq.~9! when the fractal dimensiondF is
equal to the spatial dimensiond. The lengthjR is now inter-
preted as the lower cutoff size below which the simp
asymptotic behavior~80! no longer holds. A straightforward
generalization of the Imry-Ma argument gives the condit
for breaking of the long-range order,

d,
412dF

3
, ~81!

which, for the physical dimensiond53, is met only if dF
.2.5.

The soft fluctuation at the polydomain-monodoma
threshold has an amplitudêudnR(q)u2&}q22(dF2d12). If
dF,d, the real-space amplitudêudnR(r )u2& converges and
its strain dependence is controlled by a factor
2(D/K8qmax

2 )d2dF for D!K8qmax
2 .

V. THE CASE OF ANISOTROPIC CROSSLINKING:
STRONG DISORDER REGIME

The almost completely soft mechanical response as
have described in Sec. III is not always observed in exp
ments. In fact, direct evidence of a vanishingly small stres
rather scarce@15,17#. In many other cases, a finite and si
able plateau stress is found in the PM transition region of
strain-stress curve. An existing theory@22# for such ‘‘non-
soft’’ response assumes that an external strain makes
elastic free energy localized in thin domain walls. The the
estimates the plateau stress to be ofO(a) in the presence o
weak quenched randomness. However, from the result
the previous sections, we know that weak disorder allo
nonlocal domain reorganization and the coupling free ene
2aQ:¹u makes a nonpositive contribution to the stre
Hence we argue that the observed nonsoft response is ca
by somestrong disorder effect, which is presumably due to
large-scale frozen heterogeneity. In this section, we study
mechanical property and associated spatial structure in
strong disorder regime.

As a possible realization of strong disorder, we consi
the case of anisotropic crosslinking. Melts of nematic po
mers often exhibit long-lived polydomain textures after
quench from the isotropic phase@55–57#. The size of the
domains is macroscopic and typically of micron order. Wh
such a melt is crosslinked, its nonuniform orientation is i
printed into the network. We denote the initial configurati
by Q0(r ). The extended affine-deformation theory prescrib
the elastic free energy,

Fel5
m

2E dr Tr@~ I1a0Q0!•LT
•~ I2aQ!•L2I #,

~82!

where a0 is expressed in terms of the parameters used
@12# as

a05
l i2l '

~1/d!l i1~121/d!l '

, ~83!
e
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or equivalently,a05a/@12(122/d)a#. Note that the above
free energy is obtained by just formally replacingR with
a0Q0 in the free energy~13!. Thus, the initial texture field
Q0 provides a source of quenched disorder. Effective dis
der strength that corresponds to Eq.~31! can be defined by

D5
maa0

K
j0

2 , ~84!

wherej0 is the correlation length of the initial texture. If w
setj051 mm anda50.1, we have a very large numberD
;(j0 /jc)

25103–105. Since the orientational order is pre
dominantly affected by this strong disorder, we do not ta
into account other mesoscopic sources of quenched stre
which is legitimate as a first approximation.

We have simulated the PM transition in the followin
way. To generate the initial configuration, we mimicked t
phase-ordering kinetics of nematic polymer solutions by
merically solving the equation

]n

]t
52Gn ~ I2nn!•

dFF

dn
. ~85!

Taking a sitewise-random director configuration as the ini
condition, we integrated Eq.~85! over 50 time steps~with
Gn50.2 andDt51) to generateQ0(r ). After crosslinking
the system by addingFel to the free energy and settingl
51 andu50, we integrated Eqs.~59! and ~60! for 13104

time steps to equilibrate the system. The mechanical
sponse was studied in just the same way as described in
III.

Figure 14 shows the strain-stress and strain-orienta
curves fora50.2, 0.4, 0.8, and 1.2. The strain-stress cu
bends at a value ofl where the director is still far from
aligned. Fora>0.8, the gradient of the strain-stress cur
has a nonmonotonic dependence on the strain, and is sm
est at an intermediate value ofl. This is in qualitative agree-

FIG. 14. Strain-stress and strain-orientation curves for the c
of anisotropic crosslinking. Plotted for casesa50.2, 0.4, 0.8, and
1.2 from the left to right, withma2516 in common.
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ment with the observed plateau behavior, although the
teau region is not clearly distinguishable from other regio
The strain-orientation curve shows only a gradual crosso
to the monodomain state, especially for larger values ofa.
The slope of the scaled elastic stressm21smacro is roughly
independent ofa in the vicinity of the pointl51.

Evolution of the director texture during the PM transitio
is shown in Fig. 15, and the distribution of the elastic fr
energy is shown in Fig. 16. Atl51, the director texture is
almost the same as that just before crosslinking, orQ(r )
5Q0(r ). This is reflected in the extremely homogeneo
free-energy distribution. External strain strongly dehomo
enizes the distribution, and the peak is continuously bro
ened as we increasel toward the monodomain region.

VI. DISCUSSION AND SUMMARY

We have studied polydomain nematic networks from t
aspects, namely,~i! breaking of long-range orientational o
der by frozen internal stresses and~ii ! a nonlocal interdomain

FIG. 15. Snapshots of the fieldQxy(r ) for the case of aniso-
tropic crosslinking. The director texture of the nematic liquid ju
before crosslinking is retained atl51.

FIG. 16. Histogram of the elastic free energy contained in a s
Casesl51, 1.03, and 1.05 are shown. The peak forl51 is out of
the window and counts more than 3000 sites.
a-
.

er

s
-
d-

interaction arising from strain-orientation coupling. The m
chanical response is controlled by the latter if the quenc
disorder is of moderate strength~or if D&1). In this case,
the proper elastic interaction reorganizes the polydom
structure so that local elongation along the director
achieved everywhere in the system. The resulting struc
contains the checkered correlation pattern on various sca
which produces the ‘‘four-leaf clover’’ pattern in the dep
larized scattering intensity. Upon stretching, the director a
the local strain axis coincidently rotate toward the directi
of macroscopic extension, and thus the elastic free ene
keeps almost constant until a complete alignment is attain
The change in elastic free energy accompanying the
transition is analytically estimated to be ofO(a3). This re-
sult does not depend on a specific model of nonlinear e
ticity. In fact, we obtained it by harmonic expansion of th
elastic free energy, which is unique from symmetry@7#. Nu-
merical simulation reveals a more complete softness, and
find essentially noa dependence of the average macrosco
stress~47!. We cannot exclude the theoretical possibility th
the PM transition is exactly soft in the weak disorder lim
We may say that there are mechanicalquasi-Goldstone
modes, which are distinguished from the genuine Goldsto
modes of fluid nematic liquid crystals in that there is
strongly anisotropic correlation even in the absence of ex
nal field and that the quenched disorder selects a chara
istic length scale.

We have discussed two sources of quenched disor
One is the random stress due to residual heterogen
strains at the moment of crosslinking, considered ubiquit
in rubbery networks. The anisotropic~shear! part of random
stresses acts on the orientational order, both locally and n
locally. The macroscopic domain size observed in exp
ments can be explained if there are frozen heterogeneitie
a reasonably small magnitude~e.g., 1% in strain! and a size
somewhat larger than that of individual network mesh
~e.g., 102 nm!.

A different viewpoint was taken in previous theories@20–
22#, where a random molecular field operating at crosslin
was assumed to be the source of disorder. The random
hypothesized there has a small correlation length roug
equal to the distancel between crosslinks. The ratioj/ l is a
large number~;103), which means a weak effective diso
der.

Currently we know of no firm experimental indication o
the disorder strength. A possible method of its estimate i
observe director fluctuation in the monodomain state.
have calculated thermal and disorder contributions to
fluctuation amplitude, which is proportional to the polariz
light scattering intensity. The intensity diminishes as w
stretch the network, and there is a region of macrosco
strainl where the disorder contribution dominates over t
thermal one. The width of the region and the absolute va
of the intensity should tell us the order of the disord
strength. The thermal and quenched contributions could
separately analyzed by use of dynamical light scatter
~DLS!. Indeed, DLS has been successfully used to dec
pose the two kinds of density fluctuation in gels@2#. It is
hoped that a similar method will be developed for orientat
fluctuation in the present system.

By crosslinking the network in the nematic phase and

t

.
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the course of phase ordering, we obtain another kind
quenched stress. The polydomain texture of the liqu
crystalline polymer melt is almost completely frozen
crosslinking, if its characteristic size is larger thanjc . The
memory of the initial macroscopic texture makes the m
chanical response nonsoft. Spatial distribution of the ela
free energy is strongly dehomogenized by applied strain
contrast to the case of isotropic crosslinking.

The influence of crosslinking conditions has seldom be
discussed in previous studies of the PM transition, except
a few experimental papers@14,17#. Küpfer and Finkelmann
@14# studied both isotropic and anisotropic crosslinkings u
der external stress of various magnitudes. Figure 8 in
reference shows that polydomain networks crosslinked in
nematic phase are harder than those prepared in the isot
phase. Another example of soft and nonsoft PM transition
given in Ref. @17#, where it is stated that some of the
samples were prepared above the isotropic-nematic trans
temperature of the melt, while the others are crosslinked
low it. Unfortunately, they do not explicitly state th
crosslinking condition for each stress-strain curve. We h
there will be further effort in this direction in the future
especially to find more evidence of vanishing macrosco
stress.

A remark should be made in relation to this. We ha
assumed that the quenched heterogeneities have mesos
sizes in the case of isotropic crosslinking. However, if t
network is crosslinked in poor solvents or near the spino
line, the heterogeneities can be macroscopic and cause s
effective disorder. Therefore, the mechanical respo
should be discussed in terms of the size of the heterogen
not only on the phase where the gel is fabricated. Anot
problem in interpretation of strain-stress data arises from
slowness of dynamical relaxation. A recent dynamic m
surement by Clarke and Terentjev@18# strongly suggests tha
the stress level will be substantially lowered in the final eq
librium state, which is not reachable on a practical tim
scale. It might be possible that a soft equilibrium PM tran
tion is masked behind a stress plateau of a sizable he
which was reported in earlier studies@13,14#.

We have studied dynamical relaxation after a quen
from the isotropic phase. The structure factor develop
peak at a finite wave number, which goes to zero as the
equilibrium is approached. Both the inverse peak wave nu
ber and the correlation length show a power-law type gro
in an intermediate stage, while the elastic free energy is
most completely minimized in an early regime of the coa
ening process.

Some of the experimentally observed features of
‘‘four-leaf clover’’ scattering pattern have been reproduc
in the present work. First, we propose that the finiteness
the observed peak wave number is explained by the s
relaxation. The experimental peak wave number does
change during the PM transition@16#. Together with our
simulation result, it suggests that the coarsening is very s
and does not occur in the time scale of observation. Fur
experimental study of structural relaxation in conjuncti
with stress relaxation would be informative to check th
point. Second, the peak intensity increases and then
creases as we stretch the gel. Qualitatively, the same m
tonic behavior is reported in the experiment. The initial
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crease is due to a sharpening of the peak, which is parti
understood by the fact that the director fluctuation atl
5lm is soft only on a plane and a line in theq space.

We close by listing some open questions.~i! We did not
answer whether the long-range order is destroyed by anar-
bitrarily weak disorder underno external stressor, equiva-
lently, when the average strainl is not externally con-
strained. A shift of the ground state from monodomain~l
5lm) to polydomain ~l51) states should occur, eithe
gradually or abruptly, as we increase the disorder stren
from zero. Probably this problem is not of practical impo
tance because of a small but finite hysteresis and the s
dynamics.~ii ! Stretching-induced anisotropy of the depola
ized scattering pattern as we numerically find is contrary
the experimental observation. We may suggest an effec
spatial dimensionality. In three dimensions there are th
Frank constants, whose relative strengths may affect the
isotropy. Experimental investigation of 3D domain structu
would be informative.~iii ! Much remains to be done fo
understanding dynamical relaxation to the final equilibriu
state. In the theoretical part, the origin of the apparent po
law is yet unknown. Dynamic equations for dry elastome
are to be constructed, taking intranetwork friction into a
count. In the numerical part, late stages of the relaxat
process are left unexplored. Stress relaxation for str
quenched disorder and after stretching should be addre
to make a comparison to experiment. As these necess
extensive computation, we leave them for future work.
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APPENDIX A: EFFECTIVE FREE ENERGY
IN THE MONODOMAIN STATE

Here we sketch the derivation of Eq.~62!. Substituting
Eqs.~17!, ~18!, and~19! into Eq. ~13!, we have

Fel5
m

2E dr @Ci j Li j 12CikL jk~] iuj !1C̄i j L̄kl~] iuk!~] jul !

1k~] iui !
2#, ~A1!

where Ci j 5(dkl1Rkl)L̄ ikL̄ j l and Li j 5d i j 2aQi j 5(1
1a/3)d i j 2aninj . In the third term of the integrand we
have replacedCi j andLi j with their spatial averages as th
deviations will contribute only to higher-order terms in th
effective free energy. The last term is added by hand to te
porarily relax the incompressibility condition~23!, which is
recovered by taking the limitk→` afterwards. The condi-
tion of mechanical equilibrium~22! can be written as

] i~CikL jl !1C̄i j L̄kl] i] juk1k] i] juj50. ~A2!

Taking the incompressible limitk→`, we have
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u~q!5
1

C:qq FL21
•g~q!2

L21
•q

L21:qq
@q•L21

•g~q!#G ,

~A3!

whereg is an auxiliary variable defined by

gi~r !5] j~CjkLik!. ~A4!

Substituting Eq.~A3! into Eq. ~A1!, we obtain an effective
free energy,
m

de

d

g

l.

ao

n,

nd

he

d

r-
F̃el5
m

2E drC :L1
m

2Eq

1

C:q̂q̂
F 1

L̄ 21:q̂q̂
q̂•L̄ 21

•g~q!U2

2g~q!•L̄ 21
•g~2q!G , ~A5!

We arrive at Eq.~62! by setting Eq.~17! into Ci j , Eq. ~61!
into Li j , and the resulting expressions into Eqs.~A4! and
~A5!.
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