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Soft and nonsoft structural transitions in disordered nematic networks
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Properties of disordered nematic elastomers and gels are theoretically investigated with emphasis on the
roles of nonlocal elastic interactions and crosslinking conditions. Networks originally crosslinked in the iso-
tropic phase lose their long-range orientational order by the action of quenched random stresses, which we
incorporate into the affine-deformation model of nematic rubber elasticity. We present a detailed picture of
mechanical quasi-Goldstone modes, which accounts for an almost completely soft polydomain-monodomain
(PM) transition under strain as well as a “four-leaf clover” pattern in depolarized light scattering intensity.
Dynamical relaxation of the domain structure is numerically studied using a simple model. The peak wave
number of the structure factor obeys a power-law-type slow kinetics and goes to zero in true mechanical
equilibrium. The effect of quenched disorder on director fluctuation in the monodomain state is analyzed. The
random frozen contribution to the fluctuation amplitude dominates the thermal one, at long wavelengths and
near the PM transition threshold. We also study networks obtained by crosslinking polydomain nematic
polymer melts. The memory of the initial director configuration acts as correlated and strong quenched disor-
der, which renders the PM transition nonsoft. The spatial distribution of the elastic free energy is strongly
dehomogenized by external strain, in contrast to the case of isotropically crosslinked networks.

PACS numbd(s): 61.30.Cz, 61.4%:e, 64.70.Md

I. INTRODUCTION deformation theory{10,11]. Thus, and in other ways, the
behavior of homogeneous and clean nematic networks is
Elastomers and gels are intrinsically disordered solids thatow fairly well understood12].
retain the memory of their initial states. The nonequilibrium In practice, however, nematic networks in equilibrium
processes of their fabrication create frozen heterogeneities uite often exhibit polydomain director textures, where the
the network structure, which range in size from mesoscopiorientational correlation length is typically in the micron
to macroscopic scaldd,2]. The presence of the quenched range. Under external strain, polydomain networks undergo a
disorder comes to the fore when we introduce some sofstructural change into a macroscopically aligned monodo-
order in the system. For instance, density fluctuations ofnain state, where the director lies along the extensional di-
swollen gels near the critical point are strongly enhanced byection. This change, called the polydomain-monodomain
the heterogeneities. Under stretching, they produce the s@PM) transition, is characterized by a highly nonlinear me-
called “abnormal butterfly” pattern in small-angle neutron- chanical responsgl3—19. The strain-stress curve shows a
scattering intensity3—6]. It illustrates how the elasticity of small slope in the partially aligneolydomain state. De-
gels gives rise to a non-trivial effect unexpected in othempending on the material and the method of synthesis, the
random systems. Here we address another example of saflope is sometimes vanishingly small while it is sizable in
order in disordered elastic networks. other cases. The macroscopic stress as a function of strain
Nematic liquid-crystalline elastomers and gels constitute ahows a steep rise as the system turns into the monodomain
unique class of solids characterized by a coupling betweestate.
the orientational and translational degrees of freedom. Physi- There have been a few theoretical attempts to describe
cal consequences of the strain-orientation coupling haveolydomain networks and their mechanical responses. ten
been the subject of a considerable amount of studies, botBosch and Varichori20] set up the first model, in which
theoretical and experimental. We may summarize some imthey attributed the origin of the equilibrium texture to a ran-
portant theoretical advances as follows: De Genneq7] dom anchoring field exerted by network crosslinks. An inter-
showed that a spontaneous elongation along the director &sting analogy with random anisotropy magng?4] was
induced by the isotropic-nemati¢N) transition;(ii)) a mo-  pursued by Fridrikh and Terentje\22]. They proposed a
lecular model of nematic networks was constructed bymapping to the random-fielXY model under an external
Warneret al. [8], extending the classical affine-deformation magnetic field, from which analysis they predicted a discon-
model of rubber elasticity(iii ) uniformly oriented networks tinuous stress-orientation curve.
possess soft modes of strain and orientation fluctuations that Nonetheless, the role of strain-orientation coupling in
do not accompany any change of rubber-elastic free energpolydomain networks is still far from clear. There are two
It was first predicted by Goluboviand Lubensky[9] on a  aspects to be considered. First, the previous theories assume
phenomenological basis and later extended by the affinesnly local interactions between domains, for instance by ar-
guing that the elastic free energy localizes in domain walls
under strainf22]. In general, however, inhomogeneities in an
*Electronic address: uchida@ton.scphys.kyoto-u.ac.jp elastic material cause nonlocal or long-range interactions
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mediated by the strain field. Such elastic interactions control
the physics of various systems, e.g., solids with dislocations
[23] or surface defectd24,25, phase-separating alloys
[26,27], gels undergoing swellin§28,29, and membranes - k
with inclusions[30]. Disordered nematic networks provide \
another intriguing example, and differ from most of the
above materials in having a nonscalar order parameter. Sec-
ond, the mechanical response should strongly depend on the
crosslinking condition. Polydomain elastomers have been
obtained by either of the following waygl4,17: (i) to
crosslink a polymer melt in the isotropic phase and then cool
it into the nematic phaseii) to crosslink a nematic polymer
melt containing polydomain textures. These two cases have
not been theoretically well distinguished so far. We shall o ) .
refer to them as the cases of isotropic and anisotropic FIG. 1. Scher_nauc |IIu_str_at|on of dlsorder_ed netyvork structure.
crosslinkings, respectively. W_hen the nematic order is introduced, the director is prefe_rentlally
Recently, we studied the elastic interaction in iSOtrOpi_orlented along the extensional axes of frozen network strains.
cally crosslinked networkg31], and found an almost com- ) . i
pletely soft PM transitiori32]. The macroscopic stress due effect of rqndom stresses on director fluctuations in the
to the strain-orientation coupling was shown to be slightlymonodomain state. We study networks prepared in the
negative and 0D(a?) in the PM transition region, where nemayc phase in Sec. V. _In.Sec. VI, we summarize the re-
is the degree of chain anisotropy. This contrasts with théL_”tS In comparison to eXI'stlng experiments, and conclude
earlier prediction of a positive stress@{a) [22]. The elas-  With @ proposal of future directions.
tic interaction also produces a “four-leaf clover” pattern in

the depolarized light scattering intensity, which resembles Il. MODEL AND ANALYSIS
the experimental observation by Clargeal.[16,21]. o )
In this paper, we extend previous wai&1,32 and pro- A. Random stresses in isotropic networks

vide the details of our picture of the PM transition. Here let It has been known for a long tinié,33] that the network
us summarize the ideas and results which we have not enatructure of gels is often heterogeneous on many length
phasized in previous work. First, we pursue the idea thagcales, which are considerably larger than the mesh(sez
random internal stresses destroy the long-range orientationglg. 1). In the swollen state, these imperfections manifest
order, which was suggestethut not proven earlier in a themselves as density inhomogeneity and are observed
broader contexf9]. This will be done by incorporating the through the so-called butterfly pattern in neutron-scattering
notion of frozen heterogeneous strains into the extendethtensity or as speckles in light scattering experiméx6].
affine-deformation theor}{8]. We argue that the random in- Although less frequently discussed in the literature, it is
ternal stresses act as stronger sources of disorder than thatural to expect that elastomers, often fabricated by drying
random molecular field due to crosslink&0,21. We dem-  gels, also contain the memory of heterogeneous network for-
onstrate the predictiof@] of critical enhancement of orien- mation. The frozen heterogeneities reflect the nonequilibrium
tational fluctuation by frozen heterogeneities, by analysis ohature of the crosslinking processes, and produce random
director modes in the monodomain state. Second, evolutiolhternal stresses in the material. While the roles of random
of domain structure with and without external stretching isstresses in gels and other amorphous solids have been dis-
numerically simulated by a simplified dynamical model. Thecussed from a phenomenological point of ViB\B“r], much
“four-leaf clover” scattering pattern has four peaks at finite remains to be done to understand them on the basis of a
wave numbers, and the peak height is a nonmonotonic fungnolecular theory35]. In this subsection, we recapitulate the
tion of the macroscopic strain, in qualitative agreement withnotion of random stresses using the classical affine-
experiment. We find a slow dynamical relaxation of thedeformation theory of isotropic rubber networl@s], in or-
structure factor, and show that the peak wave number asympter to prepare for modeling disordered nematic networks in
totically goes to zero in the long-time limit. Third, we study the next subsection.
the case of anisotropic crosslinking. In this case, the initial The basic object in the affine-deformation theory is the
director configuration of a macroscopic polydomain textureprobability distribution of the chain’s end-to-end vecjar
is memorized into the network. It provides a source of strongrhe distribution function at thermal equilibrium is isotropic
and correlated disorder, resulting in a nonsoft PM transitionand Gaussian, and is given by
The spatial distribution of elastic free energy in anisotropi-
cally crosslinked networks is strongly dehomogenized by d
strain, while that in isotropically crosslinked networks is un- peq(p):/\/*lex — _pZ), (1)
changed during the PM transition. 20

This paper is organized as follows. In Sec. I, we intro-
duce a random stress model, derive an effective free energwhere () =<p2>eq is a constantd is the spatial dimension,
and discuss the mechanism of the soft mechanical responsend V= [dp P((p) is the normalization factor. The macro-
Section Il describes a numerical simulation of the polydo-scopic deformation of the network is described by the
main state and the PM transition. In Sec. IV, we analyze the&Cauchy deformation tensor,
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wherer andr are the positions of material points at obser-
vation and at the moment of crosslinking, respectively. The

basic assumption of the theory is that each chain’s end-to- +ﬂ'25ij5k|}- 9
end vector affinely changes @s— A-p in response to the

macroscopic deformation. The free energy per chain is giveRpe dimensionless constangsand 8’ represent the magni-
by [36] tudes of shear and dilatational quenched strains, respectively.

B. Random stresses in nematic networks

Fenain= _kBTJ dp Po(p)In Peg(A-p). ® Next we consider nematic elastomers and gels. Warner

et al.[8] constructed an affine-deformation theory of nematic
where Py(p) is the probability distribution function at the networks by generalizing the classical theory. Their basic
moment of crosslinking, which is not necessarily identical toobservation is that nematic chains with low backbone rigid-
the equilibrium distribution. We assume that the chains ardty are well characterized by an anisotropic Gaussian confor-
distorted before crosslinking, and denote the deviation fromnation, elongated along the director. The equilibrium distri-
the equilibrium conformation by a tensk;, defined by bution of the end-to-end vector can be written in the form

(PP)o=Q(I+R), (4) Pe({p)=./\f'_lexr{—% p-(1-aQ)-p|, (10

wherel is the unit tensor. If the deviation is not very large ] ) i
and the chains are not stretched out, we may still approxivherea is the degree of chain anisotropy and
mateP, to be Gaussian, and set

1
d Qij=Qo< 5ij_aninj> 11
Po(p)=NaleXﬁ{ﬁp-(l+R)l~p- ® N L ,

is the orientational order parameter wittbeing the director.

We consider a system deep in the nematic phase and set
Substituting Eqgs(1) and(5) into Eg. (3), we have Qo=1; the state of orientation is completely specified by the
director. The coupling constantis expressed in terms of the
parameters used [i2] as

keT
fenari=—~[Tr G+R:G+Inde(1+R)], (6) .
_ /H—/i
(1-1d)/+(1d) /-

a (12
where Gjj=AjAy; is the metric tensor of deformation.
Equation(6) is not new and essentially contained in the clas-
sical theory of Flornyf38]. Taking the spatial heterogeneity of
R into account and neglecting terms independenf\pthe

total elastic free energy is written as

Note thata does not exceed/(d—1), the value attained in
the anisotropic limit’// | —o. An advantage of the affine-
deformation model is that it can describe arbitrary crosslink-
ing conditions; the networks can be fabricated either in the
isotropic or the nematic phase. First we consider networks
keTvo originally crosslinked in the isotropic phase, and we shall
FE|:TJ dro(Tr G+R:G), (7)  treat the case of anisotropic crosslinking in Sec. V. The ran-
dom stresses are now readily incorporated into the original
model. For the case of isotropic crosslinking, the initial chain
where v is the number density of subchains. Inhomoge-conformation can be described by EE), with Egs.(8) and
neous contribution of the foriR: G can be also derived from (9). Substituting Eqs(5) and(10) into Eq.(3), and dropping
Cauchy’s theory of solids bound by a central fof84,37.  terms independent of and/orQ, we arrive at the elastic free
We shall callR;; the quenched random strd$d, although it energy,
is more directly related to quenched randatnain in the
present model. For simplicity, we assume that the frozen
heterogeneities have a single characteristic &izewhich is Felzﬁj dr T{(1+R)-AT-(I-aQ)-A—1] (13
substantially larger than the mesh size. After a coarse- 2
graining on the scalér, we can regar®R;; as a spatially

uncorrelated Gaussian random variable satisfying with u=kgTvo({2/Q"). Here we subtracted a constant so
thatF ¢ vanishes wherh =1 anda= 8=0. We also replaced

Jdrg with fdr, assuming an incompressible network and
(Rij(ro))=0, (8) imposing the local constraint,
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isotropic nematic C. Effective free energy
In this subsection, we derive the effective free energy in
the mechanical equilibrium state under the constramtl,
and discuss its physical consequences. Substituting Egs.

(17), (18) and(19) into Eqg.(13), expanding it with respect to
Vu, and retaining a bilinear form iNu, R, andQ, we have

1 -

FIG. 2. Spontaneous macroscopic elongation of an itdain Fe||>\:1:Ef dr[((giuj)2+ 2(Rij— aQj))diuj— aR;;Q; 1.
nematic gel, induced by the IN transition. 2 (21)

detA=1. 14 . - . , .
(14 From this we eliminate the displacement field using the me-

We decompose the elastic free energy into proper and disofhanical equilibrium condition,
der contributions af.=F5+F5, where, by definition, the

fqrmer is given by formally settingk=0 in the right-hand SF g
side of Eq.(13), and ST

0, (22)

p_H AT (1 ) and the incompressibility conditioi23), which to the lowest
Fel 2] dr T{R-A"-(1=aQ)- A]. (15) order inVu reads

The total free energy of the system is written las F
+Fg, whereF¢ is the Frank free energy, for which we use V-u=0. (23
the so-called one-constant approximati@9)],
After a straightforward calculation following the procedure
K described in31], we obtain an effective elastic free energy
FF:EJ dr(Vn)Z2. (16)  Which is correct to the quadratic orderdn g, andg’, as

We assume that the average deformation is a uniaxial ~ _ M L ann . )
strain along thex axis, parametrized by the elongation ratio Foly=1= qu{l(l a9)-[a-R(@)—eq-Q(q)]|
A, as

+aR(0):Q(—a)}, (24)

A=\gg+\ YD (—ge,). 1 .
& (1=8&) @n whereq=g/|q| andfq=f(27-r)‘ddq (the tilde is to put to
The internal displacement is defined as the deviation frongxpress the effective nature of the free engrghe proper
the average deformation, contribution to the free energy is given by

u=r—A-rg, (18) ~ wa? PO
’ F§=—7fI(I—qq)~[q-Q(q)]|2- (25)
with which the deformation tensor is expressed as d

In the real space, E¢25) is rewritten in the form of a two-

Aij= Ay 8+ i) (19 body long-range interaction, as
(here and hereafter, we imply summation over repeated indi- )
cesi, j, k, I, andm). =p_ M« ) o )
In the absence of quenched disorder, the elastic free en-Fe'_ 2 dr | dr'[Qi(r)-#i9;G(r—r")- Qu(r’)
ergy is minimized ah =\, andu=0, where , ,
+Qij(r) - 9;0j01 3, Go(r—r") - Q(r')1, (26)
(d—1)/2d
= w (20) whereG,(r) (n=1,2) are the Green functions defined by
" 1-(1-1d)«a
is the ratio of the spontaneous elongation induced by the (V2)"Gp(r)=—4(r), (27)

isotropic-nematic transitiofi7,12] (see Fig. 2 However, if

the random stresses are strong enough, the long-range orien-

tational order is destroyed and the ground state of the system Gp(r—e)=0. (28)

is shifted to a polydomain state with=1, as we shall see.

Hereafter and throughout the paper, we regaids an exter- In a similar manner, the disorder part of the free energy is
nally controlled parameter. written as
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Fo-pa [ dr [ o @ @ @
X{Ri(r)-[—38;8(r—1")+d3;G1(r—r")]-Qji(r’)
+Rij(r)'aiﬁjakéﬁGz(r_r,)'Qk|(r/)}+C0nSt. (29) @ @ @

In a given direction ofR=r—r’, the kernelsg;d;G, and

9;9;0,9,G, in Egs.(26) and(29) decay in proportion tR . @ @
Let us discuss the physical meaning of the effective free @

energy. First we consider the disorder part, neglecting the A -

proper elastic interaction for the moment. If we decompose
the random stress into the dilatational pagid;; /d and the

FIG. 3. Preferred local director configuration. Ellipses indicate
shear (tracelesp part Rj; —Rydj; /d, the former makes no anisotropy of local strain. The “checkered” structure enables

contribution to the free energ{21) because of Eq('_23) and each domain to elongate along the local director, without violating
the tracelessness @. Thus, only the shear portion of the e giobal constraink =1. Note that the proper elastic interaction

random stresselsvhose strength is represented By is rel-  goes not select the characteristic size of the pattern.
evant, at least in the bilinear order. It is intuitively obvious

that a mere volume change does not create any preferential

, ) s i - ; : n=(cosb,sinb), (32
director orientation, while anisotropic strain does. As seen
from Eq. (29), the random stresses both locally and nonlo-gr, equivalently,
cally act on the director field. The classical scaling argument
by Imry and Ma[40] tells that arbitrary weak random .
stresses destroy the long-range orientation order in dimen- Q= E cos2  sin2f (33)
sions lower than 4. Although the original Imry-Ma argument 2|sin20 —cos29|

assumes an uncorrelated random field, it is easy to see that it

also holds in the present case, including the scaling law foA straightforward calculation reduces E@6) to

the domain size. To see this, it is useful to rewrite the right-

hand side of Eq.29) into the form wafdr P(r):Q(r), o 1

where the effective random fielél has a long-range correla- |~:eP|=_J er dr'— cog 2(6(r) — )+ 2(6(r") — )],
tion schematically represented as 16m R

(34)
(Pij(N)Py(r')) = €x Mijq S(r—=r") + T [r—=r"| 79, where ¢ is the azimuthal angle of R=r—r’
(30 =|R|(cosy,siny). From the angle dependence of the inte-

grand, we expect that the above free energy is minimized by
a “checkered” domain configuration as depicted in Fig. 3.

" iy - orrelation in directions parallel and perpendicular to the
guantities, there appears no additional characteristic leng

hat aff he | M i ¢ disorder f cal director is suppressed, while those in oblique directions
that aftects the Imry-Ma scaling of disorder iree energy Con—.e enpanced. It has the following simple interpretation.

taingd per domain..The domain size or the orientational CorUpon the isotropic-nematic transition, each part of the net-
relation length, which we denote b, is determined by @ 4k tends to elongate along the local director. The domain
balance between the effects of random stresses and Frapkiha center of the figure pushes the top neighbor upward,
elasti_city. T_he effective strength of disorder is expressed b¥)u|ls the left neighbor rightward, and so on. To reduce the
the dimensionless parameter mechanical conflict without violating the global constraint
N=1, the top and left domains are reoriented perpendicular
papB to the central one. This domain reconfiguration enables the
D= TfR- (83D N transition-induced elongation along the local director, de-
spite spatial inhomogeneity.
According to the Imry-Ma argument, the domain size scales The same picture holds for orientational correlation in
as &/égxD?@ % in the weak disorder regiob<1. For a  three dimensions. In 3D, E¢26) becomes
strong disordeD =1, we should havé~ ¢z and optimiza-
tion of the director field will reduce the disorder free-energy o 1
density roughly byuag. ﬁ;:—f drf dr'— g(n,n’,R), (35)
Next we turn to the proper elastic interaction. It should 167 R®
play only a secondary role in selecting the domain sjze
because of the invariance of E@®5) against a change of 5
scaleq—constx q. However, it creates a characteristic an- g(n,n’,R)=— = +4(n-n’)?+(n-R)?+(n’-R)?
isotropy in the orientational correlation. We see this first in 3
the two-dimensional2D) case. In 2D, the orientational con- , A, Ao, Ao
figuration is specified by the director's azimuthal angle —18n-n")(n-R)(n"-R)+15(n-R)(n"-R)*,
=0(r), as (36)

wherell;j depends on the direction of-r’ but not on its
magnitude. Since botfil;, and IL;;, are dimensionless



5124 NARIYA UCHIDA PRE 62

wheren=n(r), n’=n(r') andR=R/|R|. Correlation in the Q2(a) = (42— 07) Quu() + 2040y Quy(Q)
direction parallel to the director is suppressed as in the 2D _
case, which is known by observing that the function =€0S 2pQ,x() +5in 20Q,y(1). (42
Note thatQ;(q) andQ,(q) constitute a set of normal modes,
g(n,n’,n)=—2%+2(n-n")? (37)  and satisfy
takes its minimum when.n'. QU@ *+] Q) *=]Qu( D [*+[Quy(@)]?, (43

The domain reconfiguration due to the proper elastic in-
teraction is suppressed by the Frank elasticity at wavelengthsr
shorter than

Ql(r)2+Q2(r)2:Qxx(r)2+Qxy(r)2:41_11 (44)

€= (39) whereQ,(r) (a=1,2) are the inverse Fourier transform of
wa® Q.(q). To reduce the free enerd#0), there arises an asym-
metry Q;(r)2>Q,(r)2. In the limit where ua? is much
Thus we have three characteristic length scajestr, and  larger than the disorder and Frank contributions to the free-
¢.. The observed domain sizé is typically 1—10'um, ©nergy density, we expect from E@4) to have
while we estimatet, to be 10 nm for typical experimental
valuesKk =101 J/m, u=10> J/n?, anda=1.0. There is a Q.(r)?=1%, Q,(r)2=0, (45)
substantial gap betweehand ¢., where the proper elastic
interaction plays a dominant role. The Frank free-energyhich indeed is numerically confirmga2]. In this limit, the
density f (averaged over spacecales ade~f5(&./¢)?  elastic free-energy density is given by
<f8~ua?. The domain size&t can be cast into a scaling

form, wa’
fe=—g (46)
£ = E( D, é) _ (399  asseen from Eq40). To the second order ia, it is equal to
&r &R the free energy in the monodomain state with A ,,, as we

can easily check by substituting EQO0) into Eq. (13) and
Although E is a highly nontrivial function, it can be numeri- expanding it with respect ta. Thus we conclude that the
cally obtainable unles® is very small(or unlessé/ég is  elastic free energy change accompanied with the PM transi-
very largg, as we see in Sec. lll. We have a trial estimatetion is of O(«?), and the macroscopic stress averaged over
D~1 if we assumg3~0.01 andég~100 nm in addition to  the region KA <\, or
the above values df, u, anda. Of course, this estimate of
D is quite uncertain because the magnitudesgoand &g fu(N=A)—fo(A=1)
should depend on the kinetics of the crosslinking process, el e
quality of the solvent, etc. Our point here is that it is not
unreasonable to have a moderately strong disorder in th% a quantity 0fO(a?).

presence of submicron-scale network heterogeneities, whic To see the origin of the soft response, it is useful to look

is considered ubiquitous. at the local elastic stress tensor, which is given in the har-
monic approximation(21) as[41]

Nm—1 ’ (47)

D. Mechanical response

Now we proceed to discuss the mechanical response dur- gij= m(dju;+d;u;— aQ;; + Ry)). (48
ing the polydomain-monodomain transition. To do so, it is o
useful to examine again the polydomain stat@ &1 and in  Consider its varianceizj. In the absence of random stresses,
2D. The harmonic free enerd®5) can be rewritten ag31] we have

e.———f|Q1 g @ [ ar of—apFutute? | ar Q3

242 f dr(Q? —2Q%) =2u%a? f dr Q3,
(49

Q1(0) = 20,0y Qux(4) — (a5 — 92) Quy(Q)

=sin2¢p Qux(q)—Cos2p Qyy(q),  (41)
which vanishes from Eq45). [Here we utilized the relation
where ¢ is the azimuthal angle of the wave vectar, O=detA—1=V.-u+3(V-u)?— 2(au )(au)+0((Vu)3)
=|q|(cose,sing). Complementary t®;(q) is the variable to have(du;)(d;u;)= 0(<a®) in the mechamcal equilibrium.
defined by We neglected this higher-order term in the expansion of
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oizj .] This means that each part of the system is stretched 1 T '

along the local director by + a/4+O(a?)~\, times. This 05 —+--
local elongation, realized by the checkered polydomain 1.0 o
structure, reduces the free energy close to its absolute mini- 03 |
mum.

GR)

Ill. NUMERICAL SIMULATION 02

To further study the nonlinear mechanical response and
the effect of random disorder, we resort to numerical simu- ol .
lation by the continuum model. We utilize two different nu- "o
merical schemes, one for the polydomain state in mechanical
equilibrium atA=1 and another for the PM transition and ¢ ]
dynamical effects. A two-dimensional system is assumed for
computational advantage. All the simulations below are per-
formed on anNX N square lattice witiN=128 unless oth-
erwise stated. The grid spacing is chosen to be the unit of
length. Periodic boundary conditions are imposedngn)
andu(r), while the average strain is externally controlled.

S
T
1

Correlation Length &
N
T
s

—
1)
1

A. Polydomain state

1 1 1

First we study the polydomain state in complete mechani- 02 0.4 06 08 1
cal equilibrium and with no average strain=1). To this Disorder Strength D
end, we assume the harmonic free eng@jy) and solve the 8 T T T
linear equationg22) and (23) using the fast Fourier trans-
form. To minimize the free energy, we adapted a variant of
the simulated annealing methp#?]. The orientational order
parameter is evolved according to a Langevin equation,

Correlation Length &
-
T
1

an ol oF 50
St = Fa(l=nn)-| = =—+ 7/, (50 2 b .
wherel’, is a constant ang is a “thermal” noise satisfying 0 L L
0 0 60
po

(mr,Om(r' ) =ng 1-8(r—r")5(t—t") (5D
FIG. 4. Top: Correlation functiots(R) for different disorder
and Gaussian statistics. The noise strengghis gradually  strengths. Middle: Correlation length versus disorder strength. In
reduced to zero until the end of each run. To be precise, wthe top and middle plots we fiya®=16. Bottom: Correlation
decreasey, to zero at a constant rate in the former half of alength versus strength of elastic interaction. The disorder strength is
run, and sety,=0 in the latter half. The initial noise strength fixed (D=0.5).
and the annealing rate are chosen so that two different initial
configurations, one with a random and another with a homo- G 1
director field, lead to indistinguishable results for GO 2 (54)
geneous , g G(0) 2
the macroscopic quantities such as correlation function, av-
erage orientation, and free-energy densities. As a standard €8 each parameter set, we took a statistical average over 20
of static parameters we choose samples. The data are shown in Fig. 4. The decag(®) is
nearly exponential for strong disorder and faster than expo-
u=400, «=0.2, B=0.025, &=1, K=4, (52 nential for weak disorder. This qualitative tendency agrees
with previous results for the 2D random-fiellY model
for which .= 0.5 andD =0.5. We integrated Eq50) using  [43-45. The correlation length is a rapidly decreasing func-
the Euler scheme with time incremeat=1 per step. A tjon of the effective disorder strength, The dependence is
typical run consisted of % 10* time steps. Longer runs did roughly exponential, also in agreement with previous results
not make an observable difference in the macroscopic quafor the XY model[43,45. In the same figure we show the
tities. dependence of on wa?, which is the measure of elastic
First we consider the orientational correlation function, interaction. Although the dependence is weak, the proper
elastic interaction has an effect of increasing the correlation
G(R):<Qij(r)Qij(r+R)>a (53) length. This is related to the enhancement of correlation in
directions oblique to the local director, depicted in Fig. 3. In
which is a function only of distance. We define the correla-order to quantify the director-relative correlation, we define

tion length¢ through the function
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should be considered as a result of mutual cancellation of
positive and negative correlation by taking the angular aver-
age.

A real-space snapshot of the order-parameter fgldis
also given in Fig. 5. As the gray scale shows, the contour
Qxy=0 preferentially lies in the horizontdk) and vertical
(y) directions. This corresponds to the checkered domain
structure in Fig. 3note that the gray scale is chosen so that
the director is oblique to the horizontal axis in the brightest
and darkest regionsMore precisely, the checkered pattern is
found on many different length scales, which is a natural
consequence of the fact that the elastic interaction energy
(24) is scale-independent.

An experimentally accessible way to characterize the an-
isotropic director correlation is the polarized light scattering.
In a weakly inhomogeneous state, the depolarizéd) light
scattering intensity is given by

1(a)=(|Qey(q)|?), (57)

except for ag-independent prefactor. According to REI6],

the above formula holds even in a highly inhomogeneous
state, if one assumes a two-dimensional configuratsme
Eqg. (2) in the referenck Our numerical data are shown in
Fig. 5. The intensity57) is expressed in terms @, andQ,

as 1(q) = cose|Qy(q)|?) +sin¢X|Qx()|?), and the asym-
metry Q,;>Q, explains the enhanced scattering @n and

q,- axes[31].

Note that the peak is located at a small but finite wave
number, contrary to what is expected from the nonconserved
nature of the orientational order parameter. In fact, we find it
to be a finite-size effect, and the peak wave number shrinks
to zero as the system si2¢ is taken to infinity, leaving a
singular minimum at the origin. To see this, we have com-
puted the circularly averaged structure factor,

2w
s@= [ "aeloy @ (59
FIG. 5. Top: Director-relative correlation functid(R), plot-

ted in the regioré<R<5¢. The unit of length is the grid siz&x. for N=64, 128, and 256 systems, and found a peak in the

Middle: Depolarized light scattering intensityQ,, (a)[?). Shown region (2m/N)<q<2(2w/N) in every case. The origin of

is the region—15<q,<15 and —15<q,<15, where the unit of " ha gingylar minimum ag=0 is explained as follows. Be-

wave number is 2/(NAx). Bottom: Snapshots of the orientational ., e of the periodic boundary condition onthe spatial

order parameter fiel®,,(r)=sin 26. The value ofQ,, is positive — . . .

in white regions and negative in black regions. averageVu should_completely vanish. This constraint sup-

presses the formation of the checkered pattern with the check

H(R)=<Qij(r) Qij[r+U(r)-R]>, (55 size larger tharN/2.

whereU(r) is a matrix of rotation that maps(r) to e, or, B. Polydomain-monodomain transition

explicitly, Next we study the PM transition using the nonlinear elas-
tic free energy(13). We found that complete minimization of
the free energy takes very much computation time. Therefore

. (569 We decided to take a more empirical approach: with a simple
dynamical model, we strained the system continuously, with-
out waiting until complete equilibration. Fortunately, the

By definition,H(x,0) andH(0,y), respectively, describe the stress-strain relation thus obtained is equilibrated to a good

correlation in directions parallel and perpendicular to the lo-degree, because of fast relaxation of the rubber-elastic free

cal director. The data for the standard parameter are plotteghergy. On the other hand, the domain structure exhibits a

in Fig. 5. We see that the correlation is long-ranged in anyslow coarsening, which we study in the absence of external

specific direction, and the exponential-like decay in Fig. 4strain.

cosf® —sind

sind cosé
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. " . FIG. 7. Strain-stress and strain-orientation curves det0.2,
Z 0.4, 0.8, and 1.2 from the left to right. Corresponding values of
(| Seteiastatercnts K are 1.05, 1.11, 1.24, and 1.41, respectively. The paramgtefs

'EHBBE-EFEIDE'E-EIBE-E}EIEE-E}EE}‘!]" HEO00EEEEE] =16 andD=0.5 are common to all cases.

) Eqgs.(59) and(60) for 5x 10* time steps withh = 1. Then we
increased\ at a constant ratén/dt=1x10"° to induce the

Free Energy Density

* i elastic —— PM transition. To check hysteresis, finally we decreased
S o e o back to unity at the rate\/dt=—-1x10"°% _
Frank - Plotted in Fig. 6 are the scaled macroscopic elastic stress
. . . w romaaep H(dfg/dN) and the mean orientatiorS
1 1.05 S 1.1 115 =c0s 9=2Q,, as functions oh. We see from the figure that
train

the elastic stress is vanishingly small and the orientation lin-
FIG. 6. Top: Strain-stress\ vs u lomaed and strain- €arly increases in the polydomain region<i<\p

orientation(\ vs S) curves fora=0.2 (\,,=1.051). Diamond$<®) (= 1.05). The stress shows a linear rise in the monodomain

and crosse$+) are for the loading and unloading processes, re-fegion \>\,, where the orientation is nearly saturated to

spectively. Bottom: Free-energy densitiésr the loading process  the maximumS= 1. While the strain-orientation curve has a

small hysteresis, the strain-stress curve is almost completely

Our dynamical model consists of a set of equations thateversible.

describe the evolution of nonconserved order parameters in The smallness of the hysteresis manifests an important

the simplest manner, namely, difference between the present system and random anisot-
ropy magnets under magnetic field. In the latter, the macro-
an SF scopic orientational order is broken solely by a random field.
E:—Fn(l —nn)- n (59 In contrast, in the present model, the monodomain state is
unstable to a strain-mediated director buckling fo£ A ,,,
and
I I |
u SF - 2 400
FIr T (60 5
s
Instead of imposing the strict incompressibility condition 5 200
(23), we penalized the local volume change by adding an @
artificial potentialF, to the free energy. By taking it in the 2
form F,=3fdr[ay(detA—1)?>+a,(detA—1)*] and choos- .
ing appropriate values of the constaats and a;, we kept 0

detA in the region[0.99,1.0] throughout the runs.

We integrated Eq959) and (60) using the Euler scheme
with T',=0.2, I' ;=0.02, andAt=1. A typical set of static
parameters is identical to that given by E§2). FIG. 8. Histogram of the elastic free energy contained in a site.

To prepare a polydomain state, we set sitewise randorDistributions for casea =1, 1.03, 1.05, and 1.07 are shown. The
numbers toQ andu as the initial condition, and integrated first three are indistinguishable from each other.

-3 -2.5 -2 -1.5 -1
Elastic Free Energy
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percent ofua?. We find essentially na-dependence of the
macroscopic stress in the polydomain region.

Shown in Fig. 8 is the histogram of the elastic free energy
contained in a lattice site. The distribution is fairly sharp and
little changed by stretching fox <\, implying that the
free energy is homogeneously minimized in the polydomain
state. Real space snapshots of the domain morphology are
shown in Fig. 9. Pinned defects are observed just below the
threshold\ =\ ,, while we find no defects remaining in the
monodomain state.

The depolarized scattering intensity is shown in Fig. 10. It
has a minimum ag=0 and develops four peaks at finite
wave numbers. As we shall see in the next subsection, the
peaks move toward the origin as the true equilibrium is ap-
proached and the domains coarsen. Here we concentrate on
the effect of stretching. The peak intensity first increases and
then decreases as a functionofUnder stretching along the
x axis, the peaks on thgg, axis are more enhanced than those
on theq, axis. The shift of the peak wave number by stretch-
ing is very small and difficult to estimate. By our choice of
the stretching rate, the PM transition was completed in 5
FIG. 9. Real-space snapshots of the fiig,(r). x 10° time steps, much before a significant coarsening can
occur.

even when there is no quenched disorder. This instability,
which will be discussed in Sec. IV in detail, makes the PM
transition almost reversible.

The free-energy densities are also shown in Fig. 6. Both Now we turn to dynamical effects. First let us discuss the
the proper and disorder parts of the rubber-elastic free energyonditions under which Eq$59) and (60) are most reason-
change little in the regiol\<\,. The latter curve has a able as a model of dynamic evolution, not only as an artifi-
slightly positive gradient. The situation is more subtle for thecial scheme of functional minimization. First, E§0) means
former. Its gradient is slightly positive in the figure, andthat the velocity du/dt is proportional to the force
turns to slightly negative for a smaller disorder strength.— §F/éSu. This applies to the motion of a network in a vis-
However, in the absence of random stresses and=dt, we  cous solven{46], where we have a straightforward analogy
had four domains whose sizes are limited by the system sizép D’arcy’s law in porous media. On the other hand, in dry
and the domain boundaries raise the elastic free energy. Betastomers, there arises a viscous stress due to intranetwork
cause of this finite-size effect, we cannot exactly tell the sigrfriction, which is proportional tdv (du/dt). This is not ac-
of the proper elastic stress in the macroscopic limit. We caneounted for in Eq(60). Thus we consider that the dynamic
not exclude the possibility that the macroscopic stress commodel is more appropriate to swollen gels than to elastomers.
pletely vanishes in the limit of weak disorder. Second, Egs(59) and (60) neglect dynamical coupling be-

The strain-stress and strain-orientation curves for largetween the order parameters, i.e., the nondiagonal part of the
values ofa are given in Fig. 7. Each curve shows a sharpOnsager coefficient matrix. This does not matter if the dy-
crossover around =\ ,(a). The elastic stress in the poly- namics of the orientational order parameter is dynamically
domain region is vanishingly small even for large coupling.“slaved” to the displacement field, which we expect to be
For any value ofe studied, the changes of the proper andthe case. In fact, if the constituent polymer of the gel is not
disorder elastic free-energy densitig§S(A=\)—fo(N  rigid, ', 1 is of the order of the viscosity of low-molecular-
=1)| and|fQ(A=\,) — f5(A=1)|, were smaller than 0.3% weight fluids, 7. On the other hand, the friction between the

A=1.07

C. Slow structural relaxation

I(q) I(q@) I(q@)
2

60 150

40 100

20 50

dx

FIG. 10. Depolarized scattering intensiiy arbitrary unit3 atA=1 ,1.03, and 1.05, from the left to right. Statistical average over 20
samples is taken for each case. Shown is the regi80<q,<30 and—30<q,<30. Note the difference in intensity.
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FIG. 11. Circularly averaged structure fac®(q) (in arbitrary

unit) at t=2x10% 8x10% and 32 10* steps and in mechanical

equilibrium. Statistical average over 20 samples is taken.

network and solvent rendefg, * to be of the order of/1?,
wherel is the mesh size of the netwofR9,47. Thus, the
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power-law-type kinetics to a slower onetat1x 10° steps.

The above results show that the relaxation process can be
decomposed into three characteristic stagiesThe quench
into the nematic phase from the isotropic phase produces
microscopic textures, which coarsen to reduce both the
rubber-elastic and Frank free energies. After the characteris-
tic domain size reache&., anisotropic domain reconfigura-
tion on this scale follows. The rubber-elastic free energy is
almost completely minimized at this early stage, because of
the scale independence of the proper elastic intera¢fidn
(i) The “checkered” domain structure further coarsens to
reduce the Frank free energy. The domain sjzend the
peak wavelength 2/q, grow in parallel to each othefiii)

The domain size converges to a finite equilibrium value,
while the anisotropic domain reconfiguration proceeds on
larger scale$lim,_,.qq(t)=0].

IV. FLUCTUATION IN THE MONODOMAIN STATE

characteristic relaxation time of the strain at the scale of
domain size isv(§/|)2(>1) times larger than that @. A. Critical enhancement of soft fluctuation by disorder—
Evolution of the structure factd®(q) [as defined by Eq. Golubovic-Lubensky prediction
(58)] is shown in Fig. 11. The peak wave number decreases Reca|| that, if there is no quenched disorder, the ground
and the peak intensity increases as a function of time. AlsQate of the system is the macroscopically elongated state
shown in the figure is the structure factor at complete meyii, A=\, andu=0. In this state, there are so-called soft
chanical equilibrium, which is obtained by the numerical j,o4es of director fluctuation, which do not accompany any
scheme used in Sec. Ill A. The correlation lengthnd the change in the rubber-elastic free enef@-11. The pres-
inverse of the pea_k Wave_numlxw are plotted in the middle  apce of the soft modes implies that a homogeneous director
of Fig. 12. In the time region £ 10°<t<3x1C°, the former  ¢onfiguration becomes unstable ok ) .; when we com-
is well fitted by a power lawg(t)t® with €=0.23+0.02,  nyress the gel along the optical axis, the director “buckles” to
and the latter grows almost in parallel to the former. partially cancel the rise of elastic free energy by compres-
The Frank and rubber-elastic free energies are plotted agon. The result of the preceding section means that this in-
functions of time in Fig. 12. While the elastic free energy siapility is almost completely soft even for large deforma-
changes little after an early stage of around1C® time  tigns. in this section, we look at the monodomain region
steps, the Frank energy densftyshows a slow and continu- =) and analyze the director fluctuation modes in a har-
ous decrease, which is approximately described by a powghonic level. In a general point of view, our analysis gives a

law frxt™€ in the region X10°<t<3x10°, with €'

=0.22=0.03.

Presently we have no explanation for the good fitg(a]j

specific demonstration of the prediction by Golubowgicd
Lubensky[9] on a class of elastic systems that undergo a
spontaneous shear deformatigtenisotropic glasses” in

andfg(t) by power laws. We point out that the valueseof their terminology. They have shown that such material has a
and €' are much smaller than the corresponding exponentsoft mode of shear deformation in its ground state, and the
for the 2D nonconservedY model without quenched disor- soft fluctuation is critically enhanced by random stresses. In
der, which equal 0.5 and 1.0 from a simple scaling argumenthe language of the present system, their prediction corre-
[48]. The naive scaling relatios’ =2¢ is also broken here, ponds to the statement that the director fluctuation at the
which is not at all surprising if we consider the presence ofcritical point A =\, is strongly enhanced by quenched dis-
quenched disordg@9]. We should also stress that the final order and satisfied 5n(q)|?)=<q~*. Nonetheless, it was not
equilibrium values of¢ and fg are finite. Preliminary study fully confirmed because of a breakdown of the harmonic
by a longer run without statistics finds a crossover from theapproximation at the critical poinh =\ ,,. Also, the model

T T T T
4L ! 0.2
o ]
= 2
g FIG. 12. Left: Evolution of the
oy o1 correlation length¢ and inverse
> L 7 i g . peak wave numben,®. Right:
E m a1 Dynamic relaxation of Frank and
7023 i P elastic free energies. Plotted are
g o data from 20 individual runs.
g 0.05 a 0 100000 200000 300000
1 sl P | | 1
1000 10000 100000 1000 10000 100000

time(steps)

time (steps)
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used in[9] is quite phenomenological, and a quantitativeyenient to introduce two unit vectoss=qx e, /|qx e,| and
assessment of the fluctuation enhancement is lacking. Hegg= e, x e, [39], with which the integrand becomes

we extend the analysis to arbitrary valuesagfand discuss

the practical possibility of finding disorder-enhanced fluctua-

tions.

The director is decomposed into a homogeneous part and 2™

a small deviation, as

n(r)=e+on(r). (61)

Expanding the basic free ener¢}d) with respect tosn and

Asley- an(Q)2+ 3[A1+A(1—-02)]ey- on(q)|2
(69)

At A=\, the coefficientA; takes its minimum value 0 for

alle,, while A;+A,(1—q2) is minimized and vanishes both
on the lineg||e, and in the plang L e,. These correspond to

u, and then eliminating the elastic field using the mechanicai® soft modes. Similar results have been obtained by Olm-
equilibrium condition, we obtain an effective free energy inSted [11] for monodomain elastomers crosslinked in the

terms ofén. An outline of the calculation is given in Appen- Nématic phase and without external strain.

dix A. For the three-dimensional case, the result is

Fam i | A (@I 14208 - an(a)

— R (@) 8n;(— ) — By (N, Q) qiR ([ q- n(— )]
—B,(\,9)[q-R'(q)- 8n(—a)]—Bs(\,q)[R’(a):qq]
X[qg-én(—a)1}, (62)

3a )\66|)2<

Ai(N,q)=N\3—1— —,
1(\,0) 3+4a 1+ (- 1)

(63)

Ay(N,Q)
3a(3+4a) [(3+a)/(3—2a)+1\°]%q2 3a
3ta 3+a(2+02) 3-2a
1+(A\%-1)g? ’
(64)
1 3a [ 3+« 3| ~2
N 37 al3-2a TN % -
S 1+(\3-1g2
. \3q,
Bo(\,Q)= —————=5, 66
2(N,Q) FNCTYY (66)
3+a 3|~
Ba(\,0)= 322" )% 67)
PN TF
Ri,j(Q):KikKlekl(Q)a (68)

which is correct to the bilinear order n andR (we neglect

terms independent ain).

The random stresses shift the ground state to an inhomo-
geneous statejn= éng andu=ug. The frozen director de-
viation dng is obtained by minimizing the total free energy

Fot Fg with respect todn, as

5”R,i(Q):A—1+K,q2 Rix(a)+B; q;R{(q)
Ay(1+B;) . -
il - 22V GG R!
At A K 0id;Rj«(a)
Ax(BytB3) |~ .-
+ —-—= = % Jqg[qq:R’ ,
T A ALK ail9a:R"(q)]

(70

where we have introduced a scaled Frank constant,

KA\

K'= .
mo

(71)

At the critical pointA =\, the quantityA,;+ A, appearing

in Eqg. (70) vanishes forgle,. Hence, in the long-
wavelength limitg—0, we havedng(q)=q 2 in the soft
directionsql e, and g e,. This means a divergence of the
real space amplitudg ong(r)|?) and breakdown of the har-
monic approximation, as pointed out in REB]. Severe is
the divergence of the frozen elastic field, which is related

to Sng through the mechanical equilibrium conditidA?2).

At \=\,, it behaves ag|ug(q)|?)<q~® in the soft direc-
tions, and(|ug(r)|?) diverges. However, these divergences
disappear fol >\ ,,, where the excess stretching acts as a
stabilizing field. Now we consider this region. The condition
for the harmonic approximation to be valid {sng(r)|?)
<1, which implies(| Vug(r)|?)<a?. To assess the condition
by order estimate, we concentrate on the plghe,, from
which arises the most significant contribution to the real-
space amplitude,

1
(systenis volume

(|ong(n)[?)=

fq<|6nR(q)|2>- (72

In the absence of quenched disorder, the integrand in E®n that p|ane' the Strongwtdependence oab‘nR(q) comes

(62) is of the form (Al +A,qq): n(q) Sn(—q). It is con-

from a factor(A +K'qg?) %, where
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A=A =[A;(\,@)+ A\, D]l (73

is the measure of excess stretching. Note that —\ ,, for

A —A,<<1. A saddle-point approximation around the plane

yields
B2ERaPdq
(A + K/q2)3/2

B*ER (K Ohax , 2
NKrs/zl A (A<K"0na.

Jona(r) |2~ [

,3253 qu2 312 ,
NKGZ o e

(74

where Q. iS the upper cutoff wave number. We may

roughly identify 27/q,.x With the network mesh sizd,
~(kgT/ )3 Using typical experimental valueg=10°
Jin?, K=10"* J/m, «=1.0, andT=300 K, we have/K"
=10 nm andK'qg?,,~1. ForA<K'g2,, and except in the
close vicinity of the criticality,A=0, the amplitude only

SOFT AND NONSOFT STRUCTURAL TRANSITIONSN . ..
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FIG. 13. Square amplitudes of director fluctuatiam arbitrary
unit). P$) andP{) are multiplied by a common prefactor. Shown is
the region—30<K'%%q,<30 and—30<K''?q.e,<30. Note the
strong|q| dependence of the disorder contribution.

~10°—10° nm is around or below the wavelength of visible
light. The amplitudes fow=0.2 and\/\,,=1.001 are plot-

weakly depends on the elongation ratio. In this region, theed in Fig. 13. We see that the anisotropy of the scattering

harmonic approximation is valid if and only if

B2}

K/3/2

<1, (75)

which is satisfied when we ség~10° nm andB~0.01 as a
trial.

pattern is not much affected by the quenched disorder.

The director fluctuation amplitudes are closely related to
polarized light scattering intensity39]. By comparing ex-
perimental results to the above calculation, we may extract
information on the network heterogeneity. In particular, if
the macroscopic orientation is not saturated in the monodo-
main state, it means the presence of large-scale quenched
strains that do not meet the conditi¢rb). For instance, in

The director exhibits a thermal fluctuation around the in-an optical study of a swollen monodomain gel by Chang
homogeneous ground state. Its amplitude is not affected bgt al. [50], speckles on the few-micrometer scale are ob-
the quenched randomness, at least within the harmonic caserved, which is attributed to heterogeneities as we consider

culation. The total fluctuation amplitude is given by

P@(q)=(|e,- n(q)[2 =P (@) +PE(q), (76)
PR (g = 2T, ! (77)
T A+ 81— D) A+ K g2’

P& (q)=(|e,- dng(a)|?), (78)

here. We hope that the scattering intensity will be measured
as a function of applied strain. Another origin of large-scale
heterogeneity will be discussed in Sec. V.

B. Effect of fractal heterogeneity

Up to now we assumed that the network heterogeneity has
a single characteristic sizé&; and the random stresses lack
correlation beyond this length. This is a good approximation
for densely crosslinked elastomers and gels that are far be-
yond the gel point. However, gels at or close to the gel point
are better characterized by a fractal network structure, as

wherea=1,2 andP{? and P are the thermal and frozen deduced from the percolation thedi$3,51,52 and as ex-
contributions, respectively. Let us compare the two contribuperimentally confirmed53,54. Since the statistics of the

tions. To be explicit, we compaie{?)(q) andP{)(q) on the
planeq. e, . There the rati®®?)/P{?) is controlled by a fac-
tor of the formA./(A+K'qg?), where

A :,U»Ol,Bzf?F’e

c kBT (79)

defines a crossover point. In the regidrs A, the disorder

part of the fluctuation dominates the thermal part at long

wavelengths. We estimaté\,~102 using the above-
mentioned values, for which the crossover lengtk’/A,

heterogeneity strongly affect the long-wavelength behavior
of the structure factor, it is worthwhile to generalize the re-
sults of the previous sections to include a class of fractal
heterogeneity. The random stresses are now assumed to obey

2d—dg

(Rij(DR(—@))=¢&; Fqi- o

2
ik Sj1 + 61 Sjk— 7 6ij Ok

x d

BZ

+,8I25ij5kl}a (80)
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which reduces to Eq9) when the fractal dimensiodg is
equal to the spatial dimensiah The lengthég is now inter-
preted as the lower cutoff size below which the simple
asymptotic behaviof80) no longer holds. A straightforward
generalization of the Imry-Ma argument gives the condition
for breaking of the long-range order,

it
o

0.1

Scaled Elastic Stress

4+ 2de

d<3,

(81)

which, for the physical dimensiod=3, is met only ifdr
>2.5.

The soft fluctuation at the polydomain-monodomain
threshold has an amplitudd sng(q)|?)eq 2@~ d+2) |f
de<d, the real-space amplitudgsng(r)|?) converges and
its strain dependence is controlled by a factor 1
— (A/K' g2 49 for A<K' g2 ay-

Orientation

FIG. 14. Strain-stress and strain-orientation curves for the case
of anisotropic crosslinking. Plotted for cases-0.2, 0.4, 0.8, and
1.2 from the left to right, withue®=16 in common.

The almost completely soft mechanical response as we )
have described in Sec. Ill is not always observed in experiOr €quivalently «o=a/[1—(1—2/d)«]. Note that the above
ments. In fact, direct evidence of a vanishingly small stress ié'€e energy is obtained by just formally replacifywith
rather scarcé15,17). In many other cases, a finite and siz- @oQo in the free energy13). Thus, the initial texture field
able plateau stress is found in the PM transition region of th&o Provides a source of quenched disorder. Effective disor-
strain-stress curve. An existing thedig2] for such “non-  der strength that corresponds to Eg1) can be defined by
soft” response assumes that an external strain makes the
elastic free energy localized in thin domain walls. The theory paag
estimates the plateau stress to bédgk) in the presence of D= K 53, (84)
weak quenched randomness. However, from the results of

the previous sections, we know that weak disorder allowgpqre s is the correlation length of the initial texture. If we
nonlocal domain reorganization and the coupling free energgetgoz 1 um ande=0.1, we have a very large numbBr

—aQ:Vu makes a nonpositive contribution to the stress.__ £0/£)?=10°~10. Since the orientational order is pre-

Hence we argue that the observed nonsoft response is causg, inantly affected by this strong disorder, we do not take

by somestrang disorder effe(;twhlch IS presu_mably due to into account other mesoscopic sources of quenched stresses,
large-scale frozen heterogeneity. In this section, we study thﬁ/hich is legitimate as a first approximation

mechanical property and associated spatial structure in the We have simulated the PM transition in the following

strong disorder regime. ., _way. To generate the initial configuration, we mimicked the

) ; L . bhase-ordering kinetics of nematic polymer solutions by nu-
the case of anisotropic crosslinking. Melts of nematic pOIy'mericaIIy solving the equation

mers often exhibit long-lived polydomain textures after a
guench from the isotropic pha$é5-57. The size of the
domains is macroscopic and typically of micron order. When on oFf
such a melt is crosslinked, its nonuniform orientation is im- ot ~ Ly (1=nn)- on (89
printed into the network. We denote the initial configuration
by Qo(r). The extended affine-deformation theory prescribesTaking a sitewise-random director configuration as the initial
the elastic free energy, condition, we integrated Eq85) over 50 time stepgwith
I',=0.2 andAt=1) to generateQ(r). After crosslinking
the system by adding to the free energy and setting
Felzﬁf dr T (1+agQq)-AT-(1—aQ)-A—1], =1 andu=0, we integrated Eqg59) and (60) for 1><1_O4
2 time steps to equilibrate the system. The mechanical re-
(82)  sponse was studied in just the same way as described in Sec.
Il
where aq is expressed in terms of the parameters used in Figure 14 shows the strain-stress and strain-orientation
[12] as curves fora=0.2, 0.4, 0.8, and 1.2. The strain-stress curve
bends at a value ok where the director is still far from
oy aligned. Fora=0.8, the gradient of the strain-stress curve
ap= i . (83  has a nonmonotonic dependence on the strain, and is small-
(1d)/+(1-1Md)7, est at an intermediate value ®f This is in qualitative agree-

V. THE CASE OF ANISOTROPIC CROSSLINKING:
STRONG DISORDER REGIME
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interaction arising from strain-orientation coupling. The me-
chanical response is controlled by the latter if the quenched
disorder is of moderate strengthr if D=<1). In this case,
the proper elastic interaction reorganizes the polydomain
structure so that local elongation along the director is
achieved everywhere in the system. The resulting structure
contains the checkered correlation pattern on various scales,
which produces the “four-leaf clover” pattern in the depo-
larized scattering intensity. Upon stretching, the director and
the local strain axis coincidently rotate toward the direction
of macroscopic extension, and thus the elastic free energy
keeps almost constant until a complete alignment is attained.
The change in elastic free energy accompanying the PM
transition is analytically estimated to be 6f«®). This re-
sult does not depend on a specific model of nonlinear elas-
ticity. In fact, we obtained it by harmonic expansion of the
elastic free energy, which is unique from symmdfry. Nu-
merical simulation reveals a more complete softness, and we
A=1.07 find essentially nax dependence of the average ma}c_rc_)scopic
: stresg47). We cannot exclude the theoretical possibility that
FIG. 15. Snapshots of the field,,(r) for the case of aniso- the PM transition is exactly soft in the weak disorder limit.
tropic crosslinking. The director texture of the nematic liquid just We may say that there are mechanicplasi-Goldstone
before crosslinking is retained at=1. modes which are distinguished from the genuine Goldstone
modes of fluid nematic liquid crystals in that there is a
ment with the observed plateau behavior, although the plastrongly anisotropic correlation even in the absence of exter-
teau region is not clearly distinguishable from other regionsnal field and that the quenched disorder selects a character-
The strain-orientation curve shows only a gradual crossovestic length scale.

to the monodomain state, especially for larger valuesrof =~ We have discussed two sources of quenched disorder.
The slope of the scaled elastic strgss o .0 is roughly — One is the random stress due to residual heterogeneous
independent ofx in the vicinity of the pointn=1. strains at the moment of crosslinking, considered ubiquitous

Evolution of the director texture during the PM transition in rubbery networks. The anisotropisheay part of random
is shown in Fig. 15, and the distribution of the elastic freeStresses acts on the orientational order, both locally and non-
energy is shown in Fig. 16. At=1, the director texture is locally. The macroscopic domain size observed in experi-
almost the same as that just before crosslinkingQgr) ments can be explained if there are frozen heterogeneities of
=Qo(r). This is reflected in the extremely homogeneous@ reasonably small magnitude.g., 1% in strainand a size
free-energy distribution. External strain strongly dehomog-Somewhat larger than that of individual network meshes
enizes the distribution, and the peak is continuously broad(€.g., 16 nm).

ened as we increase toward the monodomain region. A different viewpoint was taken in previous theor{@9—
22], where a random molecular field operating at crosslinks

was assumed to be the source of disorder. The random field
V1. DISCUSSION AND SUMMARY hypothesized there has a small correlation length roughly

We have studied polydomain nematic networks from two€dual to the distancebetween crosslinks. The ratidl is a
aspects, namelyj) breaking of long-range orientational or- /arge number(~10%), which means a weak effective disor-

der by frozen internal stresses 4jiigl a nonlocal interdomain der. ] ] o
Currently we know of no firm experimental indication of

800 the disorder strength. A possible method of its estimate is to
) observe director fluctuation in the monodomain state. We
have calculated thermal and disorder contributions to the
fluctuation amplitude, which is proportional to the polarized
light scattering intensity. The intensity diminishes as we
stretch the network, and there is a region of macroscopic
strain\ where the disorder contribution dominates over the
thermal one. The width of the region and the absolute value
of the intensity should tell us the order of the disorder
strength. The thermal and quenched contributions could be
separately analyzed by use of dynamical light scattering
(DLS). Indeed, DLS has been successfully used to decom-
pose the two kinds of density fluctuation in géB. It is

FIG. 16. Histogram of the elastic free energy contained in a sitethoped that a similar method will be developed for orientation
Cases\=1, 1.03, and 1.05 are shown. The peakXer1 is out of  fluctuation in the present system.
the window and counts more than 3000 sites. By crosslinking the network in the nematic phase and in

400
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the course of phase ordering, we obtain another kind o€rease is due to a sharpening of the peak, which is partially
guenched stress. The polydomain texture of the liquidunderstood by the fact that the director fluctuation\at
crystalline polymer melt is almost completely frozen by =\, is soft only on a plane and a line in tlyespace.
crosslinking, if its characteristic size is larger thén The We close by listing some open questiofi$.We did not
memory of the initial macroscopic texture makes the me-answer whether the long-range order is destroyed bgran
chanical response nonsoft. Spatial distribution of the elastifitrarily weak disorder undemo external stressr, equiva-
free energy is strongly dehomogenized by applied strain, if€ntly, when the average strain is not externally con-
contrast to the case of isotropic crosslinking. strained. A shift of the ground state from monodomé_)m
The influence of crosslinking conditions has seldom beeri Am) t0 polydomain (A\=1) states should occur, either
discussed in previous studies of the PM transition, except fogradually or abruptly, as we increase the disorder strength
a few experimental papefd4,17. Kipfer and Finkelmann from zero. Probably this problemlls not of pr.actlcal impor-
[14] studied both isotropic and anisotropic crosslinkings un-&nce because of a small but finite hysteresis and the slow
der external stress of various magnitudes. Figure 8 in thdynamics.(ii) Stretching-induced anisotropy of the depolar-
reference shows that polydomain networks crosslinked in thi#€d scattering pattern as we numerically find is contrary to
nematic phase are harder than those prepared in the isotropft€ €xPerimental observation. We may suggest an effect of
phase. Another example of soft and nonsoft PM transitions ispatial dimensionality. In thr_ee dimensions there are three
given in Ref.[17], where it is stated that some of their Frank constants, whose relative strengths may affect the an-
samples were prepared above the isotropic-nematic transitiditroPy- Experimental investigation of 3D domain structure
temperature of the melt, while the others are crosslinked ba¥ould be informative.(ii) Much remains to be done for
low it. Unfortunately, they do not explicitly state the understanding dyna}m|cal relaxathn_to the final equilibrium
crosslinking condition for each stress-strain curve. We hop&tate: In the theoretical part, the origin of the apparent power
there will be further effort in this direction in the future, '@W iS yet unknown. Dynamic equations for dry elastomers

especially to find more evidence of vanishing macroscopi@'€ 10 be constructed, taking intranetwork friction into ac-
stress. count. In the numerical part, late stages of the relaxation

A remark should be made in relation to this. We haveProcess are left unexplored. Stress relaxation for strong
assumed that the quenched heterogeneities have mesoscopitenched disorder and after stretching should be addressed
sizes in the case of isotropic crosslinking. However, if thel® Make a comparison to experiment. As these necessitate
network is crosslinked in poor solvents or near the spinodafX€nsive computation, we leave them for future work.
line, the heterogeneities can be macroscopic and cause strong
effective disorder. Therefore, the mechanical response ACKNOWLEDGMENTS
should be discussed in terms of the size of the heterogeneity, ] ] ]
not only on the phase where the gel is fabricated. Another 1he author is grateful to Professor Akira Onuki for help-
problem in interpretation of strain-stress data arises from th&!l comments and discussions. He also thanks Professor Ken
slowness of dynamical relaxation. A recent dynamic meaS€kimoto, Dr. Alexandra ten Bosch, and Dr. Jun Yamamoto
surement by Clarke and TerentjEA8] strongly suggests that for valuable discussions.
the stress level will be substantially lowered in the final equi-

librium state, which is_ not reachable or'l_a.practical timg APPENDIX A: EFFECTIVE FREE ENERGY

scale. It might be possible that a soft equilibrium PM transi- IN THE MONODOMAIN STATE

tion is masked behind a stress plateau of a sizable height, o o
which was reported in earlier studigk3,14. Here we sketch the derivation of E(62). Substituting

We have studied dynamical relaxation after a quenchEds.(17), (18), and(19) into Eq.(13), we have
from the isotropic phase. The structure factor develops a
peak at a finite wave number, which goes to zero as the true
equilibrium is appro_ached. Both the inverse peak wave num- FeI:%j dr[CijLi; +2CiL k() + CijLig(aup) (9;u;)
ber and the correlation length show a power-law type growth
in an intermediate stage, while the elastic free energy is al-
most completely minimized in an early regime of the coars-
ening process. _

Some of the experimentally observed features of thevhere Cj;=(5y+Ry)AikA; and Lj=3d;—aQ;=(1
“four-leaf clover” scattering pattern have been reproduced+ @/3)&;;—anin;. In the third term of the integrand we
in the present work. First, we propose that the finiteness ofave replace;; andL;; with their spatial averages as the
the observed peak wave number is explained by the sloweviations will contribute only to higher-order terms in the
relaxation. The experimental peak wave number does ndtffective free energy. The last term is added by hand to tem-
change during the PM transitiofl6]. Together with our porarily relax the incompressibility conditio23), which is
simulation result, it suggests that the coarsening is very slowecovered by taking the limik—o afterwards. The condi-
and does not occur in the time scale of observation. Furthefon of mechanical equilibriuni22) can be written as
experimental study of structural relaxation in conjunction
with stress relaxation would be informative to check this -
point. Second, the peak intensity increases and then de- 3i(CikLj) + CjjLyd;9;u + ki d;u; = 0. (A2)
creases as we stretch the gel. Qualitatively, the same mono-
tonic behavior is reported in the experiment. The initial in- Taking the incompressible limig—, we have

+r(aup)?], (A1)
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L~ t.q
u(g)= ——1 L1 — Lt ,
(A= &g 9(q) Lt (q 9(a)]
(A3)
whereg is an auxiliary variable defined by
gi(r)=d;(CjkLx)- (A4)

Substituting Eq(A3) into Eq. (A1), we obtain an effective
free energy,
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=~ M M 1 .

F :—fdrc:l_+— =——|=——=q-L L

=7 2)ocaalC tag 9(q)
—g(q)-fl-g<—q>], (A5)

We arrive at Eq(62) by setting Eq(17) into C;;, Eq. (61)

into L;;, and the resulting expressions into E¢a4) and
(A5).
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