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Spinodal decomposition in gels
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We construct a Ginzburg-Landau model for gels undergoing spinodal decomposition in terms of the polymer
volume fraction and a deformation tensor. We numerically demonstrate that the domain growth is extremely
slowed down in late stages, where the surface tension force, which drives the coarsening in usual fluids, is
cancelled by the elastic force. The patterns closely resemble those observed in highly viscoelastic, asymmetric
binary mixtures[S1063-651X99)50202-X]

PACS numbdss): 82.70.Gg, 61.44-e, 64.75+¢g

Gels are network systems composed of cross-linked poly- Let the Cartesian coordinates of a deformed gel be de-
mers and can swell enormously in solvgdf. Such soft noted byx=(X;,X,,X3) and those of the initial homoge-
elastic systems exhibit interesting phase transition behavioreous gel byo=(Xo1,X02,X03). Then the local deformation
as the solvent quality becomes p2t. In particular, Tanaka is represented by the deformation ten$by;} =1{dx; /dXo;}
et al. presented a theory of dynamic light scatterj8gand  [15]. The network(polymen volume fraction is related to the
observed critical slowing down of the polymer density fluc- determinant of the tensor,
tuations[4]. After Dusek and Patterson’s predictidi], a
discontinuous volume phase transition in gels has been ob- ¢= bo/Det{lj}, @)
served 6,7]. Here a macroscopic shape change of gels takes . I .
place with absorption or desorption of solvent through the\llzvrlere(ﬁ0 Is the m.mal v?Iume fraction. The total free energy
interface between the gel and the surrounding solvent. Hence F+Fel consists of two partp16-18,
such shape changes are extremely time-consuming unless the
gel size is very small. In experiments it is often the case that, Fs= kBTJ dx
when a swollen gel is suddenly brought into an unstable
temperature region, it instantly turns opaque without any ap-
prgciable volume cha.mg[éi].. This means that gels undergo FeI:EkBTf dXVoiz W, . 3
spinodal decomposition with enhancement of small scale 2 $o T
fluctuations and that the resultant two-phase structure is
eventually pinned due to elasticity arising from the cross-Heref(¢,T) depends orp and the temperaturg, v, is the
linkage. In a closely related effect, experiments have showg0ss-link density in the initial state, and
that domain structures in phase-separating polymers can be
pinned if cross-links are introduced by gelati®@j, chemical W ZE r T . (4)
cross-linking reactiorf10], or photo-cross-linkind11]. In & il
addition, use of linearly polarized light to induce photo-
cross-linking has produced lamellar domain structures, probThe free energy has been expressed in the Euler representa-
ably due to anisotropic network formati¢m2]. tion or in the deformed space. The origin of the elastic part

Unfortunately, there have been few theoretical investigaOf the free energy is as follows. Flofit] assumed that if a
tions into these problems. In a first paper, Sekimet@l. homogeneous isotropic rubber or gel with a cubic shape is
demonstrated that a steady spongelike domain structure fi¢formed into a rectangular shape, the elastic freze energy
produced by elastic pinninfL3] in a two-dimensional mi- needed is of the form AFe=5kgTwoVo[Sie -3
croscopic network system. They also found elongation of~ 2B l0g(ayaza3)], whereV, is the initial volume,B is a
domains under uniaxial compression. It is worth noting thatconstant, andy; are the elongation ratios in the three princi-
these features are very analogous to elastic effects in soligel axes, sap= ¢o/(a;a a3). Obviously, the term propor-
binary alloys[14]. tional to Eiaiz becomesF, in Eq. (3) for slowly varying

In this paper we formulate a simple time-dependentl’j;, because the volume elemeht in the deformed gel and
Ginzburg-Landau model for neutral gels and use ifnta-  dXq in the initial gel are related byx,=dx¢/ ¢, from Eq.
merically) study spinodal decomposition. We impose peri-(1). In Egs.(2) and(3) F is written as a functional o$ and
odic boundary conditions in solving the equations, so wel’j;. In a similar viscoelastic model for polymer solutions
assume that the total volume is fixed and there are no ma¢19,20, where entanglements are transiepandI’;; can be
roscopic shape changes. Thus, our results apply in the intéreated as independent variables. However, in our present gel
rior region far from the gel-solvent interface or when the gelmodel, ¢ andI';; are related by Eq.1), because the network
surface is fixed to a solid boundary wall. is assumed to be permanent.
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We may calculate the stress tensﬁi:{Hij} by super-  +v-V. Further using the relationd{’;;/dt)x = dvi/dXo;

posing an infinitesimal additional displacemeft onto x =3 (9%, 1%e;)(dv;/9x,), we obtain the equation for
and expressing the free energy changglag {T;},
14
dXE HIJ ox] (5) STV V) ij_Z D;/I'/;=0. (12)

Here oTjj=0d0%/dXoj, doX/dx;==,I716T;,, where Here,D;;=av;/dx; is the velocity gradient tensor. The sym-
{rin= {&xojlaxi} is the inverse matrix ofl';;}. The incre-  metric tenso{W;;} in Eq. (4) is governed by
mental change o is given byd¢p=— ¢=;95%;/Jx; . Then,

llzfconsists of two termglL6]. The first term is determined by jtJrv VW - E (Di,W,;+W;,D;,)=0, (12
» s
dp I where the left-hand side is called the upper convective time
I14i;=kgT| P13 +Cﬁx| ax; | (6)  derivative of tensor variables in the literatur@l]. If the

network is transient as in polymer solutions, there should be

where P,=¢afldp—f—V-(ChpV p)/2— pCV2¢/2. This a damping term on the right-hand side of Ha2). It is
is of the same form as the stress tensor for fluid binary mixusually taken to be- (W;; —(W;;))/7 in the simplest ap-

tures. The second term is the elastic part, proximation with a single relaxation time, where (W;;)
=« g;; is the equilibrium averagg21,20!.
ai; =KgTvo(d/ po) W;; . (7) The continuity equation fot follows from Eq.(1) as
The resultant force density acting on the network is __vy. _v.L V V iy
V.= ¢V — ¢ F itV G ©®) (13
where L=¢?/{ is the kinetic coefficient and 6
HereF , is regarded as a functional ¢gf andV=4/dx rep- =-V-(¢fg) is the random force characterized by

resents taking the space derivative in the Euler representéfg(X,t) Og(x',t'))=2kgTV-V'LS(x—x")8(t—t"). The
tion. As stated abové; can also be treated as a functional of linearized version of Eq(13) was first used to analyze dy-
X in the Lagrange representation; then EH§) leads to namic light scattering from gel3]. Here, diffusion of the
(8F18X) = (0! p)V -I1. polymer is caused by the chemical potential gradient
o ; V(6F 4/6¢) and the elastic force densi®- . This means
Next we discuss dynamics. In gels swollen by solvent, th(%hat there is a dynamical coupling between diffusion and

network motion is highly damped by the friction with the : X
solvent, so the network velocity with respect to the solven?t ess{22]. Note that the same dynamic eqL_Jatlor_1 has_ been
R, used for polymer solutions, where the coupling gives rise to
velocity is given by[3,17] . A )
a variety of dynamical effects such as nonexponential relax-
©) ation in dynamic light scattering22] and shear-induced
phase separatidi23,20.

We consider the stability of a homogeneous, uniaxially
deformed gel against small network deformation for general
spatial dimensionalityd. We assumex; = a;Xg; +U;, where
a;=a; and ¢;=«, for i=2. From Eq.(9), the linearized
dynamic equation for the small displacementan readily
been obtained in the Fourier space. In particular, the longi-
tudinal part or the density deviation evolves exponentially in

V:_£_1V'ﬁ+fR.

Here, ¢ is the friction coefficient between the network and
the solvent, andy is the Gaussian and Markovian noise. In
the semidilute condition we have~ 61 7.£~ 2, where g is
the solvent viscosity and is a characteristic correlation
length (= ¢~ in theta solvent In the Lagrange picture, Eq.
(9) may be regarded as a Langevin equation,

IX b | SF time with the decay rate,
v= —) =— 1—(—) fr (10)
ot « bo kgT ¢
Pq=—| 6" +Ca)a” +vo - 2 afa?|, (14
The fluctuation-dissipation theorem in the Lagrange o
representation is written as where f"=9f/9¢?. Here, the average volume fraction
, qSo/(af_la”) is simply written as¢. Note thatl’, depends
(fri(%0, D fRi(X0,t")) on the direction ofy. (i) In the isotropic case the correspond-
ing elastic free energy is of the standard fdi2d] in the long
=2kgTL (Pl Ppo) 8(Xo—Xg) S(t—1t") 5 , wavelength limit with the bulk and shear moduli being ex-
pressed aK =kgT[ $2f"—(1—2/d) vo(p/ o) 2] and G
where (@/ ¢o) 5(Xo—Xo) is replaced bys(x—x") in the EU- =k Tuo( e/ po) =2, respectively. The system is linearly
ler representation. stable for KkgT(¢?f"+vga 112 =K+(2—2/d)G=0,

The Lagrange time-derivatived{dt), and the Euler \hereas spinodal decomposition occurs Kot (2—2/d)G
time-derivatived/ gt=(d/dt) are related by 4/ dt)y =dl ot <0 [25]. (ii) If the system is uniaxially expanded or df;
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FIG. 1. Temporal evolution of domain structures in our dynami-

cal model for phase separation in gels. The three frames on the lef

correspond to the isotropic case witlj =0.3, and those on the
right correspond to the uniaxial case witfj =0.1. Polymer-rich

regions are marked in black, whereas solvent-rich regions are no 003
4038

marked. Note that the saturation values of the order parameter a
asymmetric, being higher in the polymer-rich phase.

=gq is largest, the thermal fluctuations are uniaxially sup-

pressed in the stretched direction. Hence spinodal decomp
sition occurs in the perpendicular directions fdv’
+vo( Dl Pg) af<0. We expect the formation of cylindrical
domains in three dimension@ii) For uniaxial compression,
where «, is smallest, the thermal fluctuations become

uniaxially enhanced in the stretched direction, resulting in

platelike domains.

We now present representative numerical results in the
two-dimensional case. For simplicity, we assume that the

free energy density is written in terms ofy=2¢/po—1 as
f=a(—by?/2+ y*/4) wherea,b are positive constants and
the friction constant/ is proportional to¢? as {={q( P/
¢o)2. By measuring space and time in units of
=(C¢3/8a)*? and ty=C{yp3/(32gTa?), Eq. (13 is re-
written asdy/ot=—V -J with

J=V[(b— 2 +2V) Y+ vi(1+¢) V-Z, (15

whered=(1+ )V, Z=(p/ o)W, and v} =vy/a is the di-
mensionless cross-link density. The random force term is
neglected here. From Eq¢l) and (4), we haveZ,,Z,,
—Zf(y:l, so it is convenient to introduckl by Z,,=(1
+2;)"%eM and Z,,=(1+2;)"%e ™. From Eq.(12) we
obtain

ny yX
Zo Zyy) 0
XX vy

J
(—+v-v M=DXX—Dyy+(

ot

J
StV V) Zy=DyyZyy+ DyyZyx.-

We integrated Eqg.15) and(16) for ¢, M, andZ,, using a
simple Euler-discretization scheme on B lattice (with
N=256) for b=0.8 and()=0. Our scheme used isotropic
Laplacians and patrtial derivatives, and the mesh sizes were
Ax=1 andAt=0.05. The initial condition was specified in
terms of the undeformed coordinateg=(Xq,Yq) as &;Xq
+f,=n(Ax) and a,y,+f,=m(Ax) at each lattice point,
(n,m)=(Ax)"'x, (n,m=1,... N). The variables, andf,
were random numbers given independently at each lattice
point. The parametex=(«,/a, )*? measures the degree of
uniaxial extension.

Figure 1 shows typical network domain structures in an
isotropic case, with=1 and »§=0.3, and in a uniaxial
case, withh =v2 andv§ =0.1. The domain structures for the
isotropic case closely resemble patterns observed in deeply
quenched polymer solutions and asymmetric polymer blends
[26,27. This is as expected because the viscoelastic coupling
in Eq. (13) («V- &) is important in these systems. On the
other hand, in the uniaxial case, we can see the formation of
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FIG. 2. Time dependence of the perimeter denBify) for v§
=0.1, 0.2, 0.3, and 0.38, denoted by the symbols indicated. For
comparison, we also pldias a solid ling P(t) vst for the case
without elastic effects if =0), which obeys the Lifshitz-Slyozov
law P(t)~t~“ with «=1/3. For the other curvegy=0.24, 0.17,
0.09, and 0.02 fow§ =0.1, 0.2, 0.3, and 0.38, respectively.



RAPID COMMUNICATIONS

R1334 A. ONUKI AND S. PURI PRE 59

lamellar structures. In Fig. 2 we plot the perimeter densitydata fort>rg, so the range of data is smallest fof
P(t)(=# of broken bond$M?) vst in the isotropic case, each =0.38.

curve being an average over 40 independent runs. Because Let us conclude with the following remarks.

P(t) measures the inverse length scale of the domains, Fig. 2 (i) We are currently studying the effects of heterogeneities
demonstrates extreme slowing down of the domain growth@f the network structure, which act as quenched disorder.

This is consistent with the experimeiig-12 and the simu- | €S€ are known to drastically affect the scattering ampli-
lation [13] tude, even in disordered states—particularly in uniaxial gels

. . [17,28—-31. One of our resultgnot presented hereshows
In Fig. 2, the_P(t) curves are well apprOlea'fe_OI bY ihat heterogeneities strongly amplify the growth of initial
power-law fits (-t~ “) with the growth exponents consistent f,ctuations.

with @=3(1—2vg/b) in the range of our computation time i) It is known that the scattering amplitude has a maxi-
(t<3x10%. There is no theory for such late stage behaviormum at an intermediate wave number in the presence of ions
which delicately depends on various factors such as the forf28—30. It is of great interest to understand how charges
of the elastic free energy and the space dimensionality. Walter the phase separation behavior when an ionized gel is

should also point out that takes a long time to saturate to dguenched into an unstable region. This problem constitutes a
the local equilibrium values in the two phasesdsis in- future direction for our study of spinodal decomposition in

creased. We defined the saturation timesuch that the av- gels.

erage of ¢ in the solvent-rich regions £<0) reaches We are grateful to S. Hirotsu, Q. Tran-Cong, K.
—0.80'2 at t=7,. Then we obtainedrs~(b—2v*) 1, Sekimoto, and H. Hayakawa for useful discussions. S.P.
whereb=2v* is the spinodal point as can be seen from thethanks H. Hayakawa for arranging his trip to Kyoto under
long wavelength behavior of Eq14). Figure 2 only plots the auspices of the Kyoto Research Foundation.
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