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Spinodal decomposition in gels
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We construct a Ginzburg-Landau model for gels undergoing spinodal decomposition in terms of the polymer
volume fraction and a deformation tensor. We numerically demonstrate that the domain growth is extremely
slowed down in late stages, where the surface tension force, which drives the coarsening in usual fluids, is
cancelled by the elastic force. The patterns closely resemble those observed in highly viscoelastic, asymmetric
binary mixtures.@S1063-651X~99!50202-X#

PACS number~s!: 82.70.Gg, 61.41.1e, 64.75.1g
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Gels are network systems composed of cross-linked p
mers and can swell enormously in solvent@1#. Such soft
elastic systems exhibit interesting phase transition beha
as the solvent quality becomes poor@2#. In particular, Tanaka
et al. presented a theory of dynamic light scattering@3# and
observed critical slowing down of the polymer density flu
tuations @4#. After Dus̆ek and Patterson’s prediction@5#, a
discontinuous volume phase transition in gels has been
served@6,7#. Here a macroscopic shape change of gels ta
place with absorption or desorption of solvent through
interface between the gel and the surrounding solvent. He
such shape changes are extremely time-consuming unles
gel size is very small. In experiments it is often the case t
when a swollen gel is suddenly brought into an unsta
temperature region, it instantly turns opaque without any
preciable volume change@8#. This means that gels underg
spinodal decomposition with enhancement of small sc
fluctuations and that the resultant two-phase structure
eventually pinned due to elasticity arising from the cro
linkage. In a closely related effect, experiments have sho
that domain structures in phase-separating polymers ca
pinned if cross-links are introduced by gelation@9#, chemical
cross-linking reaction@10#, or photo-cross-linking@11#. In
addition, use of linearly polarized light to induce phot
cross-linking has produced lamellar domain structures, pr
ably due to anisotropic network formation@12#.

Unfortunately, there have been few theoretical investi
tions into these problems. In a first paper, Sekimotoet al.
demonstrated that a steady spongelike domain structu
produced by elastic pinning@13# in a two-dimensional mi-
croscopic network system. They also found elongation
domains under uniaxial compression. It is worth noting t
these features are very analogous to elastic effects in s
binary alloys@14#.

In this paper we formulate a simple time-depend
Ginzburg-Landau model for neutral gels and use it to~nu-
merically! study spinodal decomposition. We impose pe
odic boundary conditions in solving the equations, so
assume that the total volume is fixed and there are no m
roscopic shape changes. Thus, our results apply in the
rior region far from the gel-solvent interface or when the g
surface is fixed to a solid boundary wall.
PRE 591063-651X/99/59~2!/1331~4!/$15.00
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Let the Cartesian coordinates of a deformed gel be
noted by x5(x1 ,x2 ,x3) and those of the initial homoge
neous gel byx05(x01,x02,x03). Then the local deformation
is represented by the deformation tensor$G i j %5$]xi /]x0 j%
@15#. The network~polymer! volume fraction is related to the
determinant of the tensor,

f5f0 /Det$G i j %, ~1!

wheref0 is the initial volume fraction. The total free energ
F5Ff1Fel consists of two parts@16–18#,

Ff5kBTE dxF f ~f,T!1
1

2
Cu¹fu2G , ~2!

Fel5
1

2
kBTE dxn0

f

f0
(

i
Wii . ~3!

Here f (f,T) depends onf and the temperatureT, n0 is the
cross-link density in the initial state, and

Wi j 5(
l

G i l G j l . ~4!

The free energy has been expressed in the Euler repres
tion or in the deformed space. The origin of the elastic p
of the free energy is as follows. Flory@1# assumed that if a
homogeneous isotropic rubber or gel with a cubic shap
deformed into a rectangular shape, the elastic free ene
needed is of the form DFel5

1
2 kBTn0V0@( ia i

223
22B log(a1a2a3)#, whereV0 is the initial volume,B is a
constant, anda i are the elongation ratios in the three princ
pal axes, sof5f0 /(a1a2a3). Obviously, the term propor-
tional to ( ia i

2 becomesFel in Eq. ~3! for slowly varying
G i j , because the volume elementdx in the deformed gel and
dx0 in the initial gel are related bydx05dxf/f0 from Eq.
~1!. In Eqs.~2! and~3! F is written as a functional off and
G i j . In a similar viscoelastic model for polymer solution
@19,20#, where entanglements are transient,f andG i j can be
treated as independent variables. However, in our presen
model,f andG i j are related by Eq.~1!, because the network
is assumed to be permanent.
R1331 ©1999 The American Physical Society
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We may calculate the stress tensorPJ5$P i j % by super-
posing an infinitesimal additional displacementdx onto x
and expressing the free energy change as@15#

dF52E dx(
i j

P i j

]

]xj
dxi . ~5!

Here dG i j 5]dxi /]x0 j , ]dxi /]xj5( l G l jdG i l , where
$G j i %5$]x0 j /]xi% is the inverse matrix of$G i j %. The incre-
mental change off is given bydf52f( i]dxi /]xi . Then,
PJ consists of two terms@16#. The first term is determined b
Ff as

Pf i j 5kBTFP1d i j 1C
]f

]xi

]f

]xj
G , ~6!

where P15f] f /]f2 f 2“•(Cf¹f)/22fC“

2f/2. This
is of the same form as the stress tensor for fluid binary m
tures. The second term is the elastic part,

s i j 5kBTn0~f/f0!Wi j . ~7!

The resultant force density acting on the network is

2“•PJ52f“

d

df
Ff1“•sJ . ~8!

HereFf is regarded as a functional off and“5]/]x rep-
resents taking the space derivative in the Euler represe
tion. As stated above,F can also be treated as a functional
x in the Lagrange representation; then Eq.~5! leads to
(dF/dx)x0

5(f0 /f)“•PJ .
Next we discuss dynamics. In gels swollen by solvent,

network motion is highly damped by the friction with th
solvent, so the network velocity with respect to the solv
velocity is given by@3,17#

v52z21
“•PJ1fR . ~9!

Here, z is the friction coefficient between the network an
the solvent, andfR is the Gaussian and Markovian noise.
the semidilute condition we havez;6phsj

22, wherehs is
the solvent viscosity andj is a characteristic correlatio
length~}f21 in theta solvent!. In the Lagrange picture, Eq
~9! may be regarded as a Langevin equation,

v5S ]x

]t D
x0

52z21
f

f0
S dF

dx D
x0

1fR . ~10!

The fluctuation-dissipation theorem in the Lagran
representation is written as

^ f Ri~x0 ,t ! f R j~x08 ,t8!&

52kBTz21~f/f0!d~x02x08!d~ t2t8!d i j ,

where (f/f0)d(x02x08) is replaced byd(x2x8) in the Eu-
ler representation.

The Lagrange time-derivative (]/]t)x0
and the Euler

time-derivative]/]t[(]/]t)x are related by (]/]t)x0
5]/]t
-

ta-

e

t

1v•“. Further using the relation (]G i j /]t)x0
5]v i /]x0 j

5( l (]xl /]x0 j )(]v i /]xl ), we obtain the equation fo
$G i j %,

S ]

]t
1v•“ DG i j 2(

l
Di l G l j50. ~11!

Here,Di j 5]v i /]xj is the velocity gradient tensor. The sym
metric tensor$Wi j % in Eq. ~4! is governed by

S ]

]t
1v•“ DWi j 2(

l
~Di l Wl j1Wi l D j l !50, ~12!

where the left-hand side is called the upper convective t
derivative of tensor variables in the literature@21#. If the
network is transient as in polymer solutions, there should
a damping term on the right-hand side of Eq.~12!. It is
usually taken to be2(Wi j 2^Wi j &)/t in the simplest ap-
proximation with a single relaxation timet, where ^Wi j &
}d i j is the equilibrium average@21,20#.

The continuity equation forf follows from Eq.~1! as

]

]t
f52“•~fv!5“•LS“ dFf

df
2

1

f
“•sJ D1uR ,

~13!

where L5f2/z is the kinetic coefficient and uR
52“•(ffR) is the random force characterized b
^uR(x,t)uR(x8,t8)&52kBT“•“8Ld(x2x8)d(t2t8). The
linearized version of Eq.~13! was first used to analyze dy
namic light scattering from gels@3#. Here, diffusion of the
polymer is caused by the chemical potential gradi
¹(dFf /df) and the elastic force density“•sJ . This means
that there is a dynamical coupling between diffusion a
stress@22#. Note that the same dynamic equation has be
used for polymer solutions, where the coupling gives rise
a variety of dynamical effects such as nonexponential re
ation in dynamic light scattering@22# and shear-induced
phase separation@23,20#.

We consider the stability of a homogeneous, uniaxia
deformed gel against small network deformation for gene
spatial dimensionalityd. We assumexi5a ix0i1ui , where
a15a i and a i5a' for i>2. From Eq.~9!, the linearized
dynamic equation for the small displacementu can readily
been obtained in the Fourier space. In particular, the lon
tudinal part or the density deviation evolves exponentially
time with the decay rate,

Gq5
kBT

z Ff2~ f 91Cq2!q21n0

f

f0
(

i
a i

2qi
2G , ~14!

where f 95]2f /]f2. Here, the average volume fractio
f0 /(a'

d21a i) is simply written asf. Note thatGq depends
on the direction ofq. ~i! In the isotropic case the correspon
ing elastic free energy is of the standard form@24# in the long
wavelength limit with the bulk and shear moduli being e
pressed asK5kBT@f2f 92(122/d)n0(f/f0)122/d# and G
5kBTn0(f/f0)122/d, respectively. The system is linearl
stable for kBT(f2f 91n0a2112/d)5K1(222/d)G>0,
whereas spinodal decomposition occurs forK1(222/d)G
,0 @25#. ~ii ! If the system is uniaxially expanded or ifa1
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5ai is largest, the thermal fluctuations are uniaxially su
pressed in the stretched direction. Hence spinodal decom
sition occurs in the perpendicular directions forf 9
1n0(f/f0)a'

2 ,0. We expect the formation of cylindrica
domains in three dimensions.~iii ! For uniaxial compression
where a1 is smallest, the thermal fluctuations becom
uniaxially enhanced in the stretched direction, resulting
platelike domains.

We now present representative numerical results in
two-dimensional case. For simplicity, we assume that
free energy densityf is written in terms ofc[2f/f021 as
f 5a(2bc2/21c4/4) wherea,b are positive constants an
the friction constantz is proportional tof2 as z5z0(f/
f0)2. By measuring space and time in units ofl

5(Cf0
2/8a)1/2 and t05Cz0f0

2/(32kBTa2), Eq. ~13! is re-
written as]c/]t52“•J with

J5“@~b2c212“2!c#1n0* ~11c!21
“•ZJ, ~15!

FIG. 1. Temporal evolution of domain structures in our dynam
cal model for phase separation in gels. The three frames on the
correspond to the isotropic case withn0* 50.3, and those on the
right correspond to the uniaxial case withn0* 50.1. Polymer-rich
regions are marked in black, whereas solvent-rich regions are
marked. Note that the saturation values of the order paramete
asymmetric, being higher in the polymer-rich phase.
-
o-

n

e
e

whereJ5(11c)v, ZJ5(f/f0)WJ , andn0* 5n0 /a is the di-
mensionless cross-link density. The random force term
neglected here. From Eqs.~1! and ~4!, we haveZxxZyy

2Zxy
2 51, so it is convenient to introduceM by Zxx5(1

1Zxy
2 )1/2eM and Zyy5(11Zxy

2 )1/2e2M. From Eq. ~12! we
obtain

S ]

]t
1v•“ D M5Dxx2Dyy1S Dxy

Zxx
2

Dyx

Zyy
DZxy ,

S ]

]t
1v•“ DZxy5DxyZyy1DyxZxx .

~16!

We integrated Eqs.~15! and ~16! for c, M , andZxy using a
simple Euler-discretization scheme on anN2 lattice ~with
N5256! for b50.8 and^c&50. Our scheme used isotropi
Laplacians and partial derivatives, and the mesh sizes w
Dx51 andDt50.05. The initial condition was specified i
terms of the undeformed coordinatesx05(x0 ,y0) as a ix0
1 f x5n(Dx) and a'y01 f y5m(Dx) at each lattice point,
(n,m)5(Dx)21x, (n,m51,... ,N). The variablesf x and f y
were random numbers given independently at each lat
point. The parameterl[(a i /a')1/2 measures the degree o
uniaxial extension.

Figure 1 shows typical network domain structures in
isotropic case, withl51 and n0* 50.3, and in a uniaxial
case, withl5& andn0* 50.1. The domain structures for th
isotropic case closely resemble patterns observed in de
quenched polymer solutions and asymmetric polymer ble
@26,27#. This is as expected because the viscoelastic coup
in Eq. ~13! (}“•sJ ) is important in these systems. On th
other hand, in the uniaxial case, we can see the formatio

-
eft

ot
re

FIG. 2. Time dependence of the perimeter densityP(t) for n0*
50.1, 0.2, 0.3, and 0.38, denoted by the symbols indicated.
comparison, we also plot~as a solid line! P(t) vs t for the case
without elastic effects (n0* 50), which obeys the Lifshitz-Slyozov
law P(t);t2a with a51/3. For the other curves,a.0.24, 0.17,
0.09, and 0.02 forn0* 50.1, 0.2, 0.3, and 0.38, respectively.
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lamellar structures. In Fig. 2 we plot the perimeter dens
P(t)(5# of broken bonds/N2) vs t in the isotropic case, eac
curve being an average over 40 independent runs. Bec
P(t) measures the inverse length scale of the domains, F
demonstrates extreme slowing down of the domain grow
This is consistent with the experiments@8–12# and the simu-
lation @13#.

In Fig. 2, the P(t) curves are well approximated b
power-law fits (;t2a) with the growth exponents consiste
with a5 1

3 (122n0* /b) in the range of our computation tim
(t,33104). There is no theory for such late stage behav
which delicately depends on various factors such as the f
of the elastic free energy and the space dimensionality.
should also point out thatc takes a long time to saturate t
the local equilibrium values in the two phases asn* is in-
creased. We defined the saturation timets such that the av-
erage of c in the solvent-rich regions (c,0) reaches
20.8b1/2 at t5ts . Then we obtainedts;(b22n* )21,
whereb52n* is the spinodal point as can be seen from
long wavelength behavior of Eq.~14!. Figure 2 only plots
ys

m

s
a

un
y

se
. 2
h.

,
m
e

e

data for t.ts , so the range of data is smallest forn0*
50.38.

Let us conclude with the following remarks.
~i! We are currently studying the effects of heterogeneit

of the network structure, which act as quenched disord
These are known to drastically affect the scattering am
tude, even in disordered states—particularly in uniaxial g
@17,28–31#. One of our results~not presented here! shows
that heterogeneities strongly amplify the growth of initi
fluctuations.

~ii ! It is known that the scattering amplitude has a ma
mum at an intermediate wave number in the presence of
@28–30#. It is of great interest to understand how charg
alter the phase separation behavior when an ionized ge
quenched into an unstable region. This problem constitut
future direction for our study of spinodal decomposition
gels.

We are grateful to S. Hirotsu, Q. Tran-Cong, K
Sekimoto, and H. Hayakawa for useful discussions. S
thanks H. Hayakawa for arranging his trip to Kyoto und
the auspices of the Kyoto Research Foundation.
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