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Abstract

Supercooled liquids with soft-core potentials are studied via molecular dynamics simulations in two and three dimen-

sions in quiescent and sheared conditions. We demonstrate that bond breakage events among particle pairs occur col-

lectively in clusters. The average life time, sb� _c�, of bonds tends to the a relaxation time, sa, for weak shear, _c� 1=sa,

and decreases as 1= _c for strong shear, _c� 1=sa. The structure factor, Sb�q�, of the broken bonds may be ®tted to the

Ornstein±Zernike form. The correlation length, n, is uniquely expressed in terms of sb� _c� as n � sb� _c�1=4
in two dimen-

sions and n � sb� _c�1=2
in three dimensions for any T and _c in glassy states. The viscosity is of order sb� _c� for any _c, so the

shear stress tends to a limiting stress for _csa � 1. Ó 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

Extensive e�orts have recently been made to
study structural relaxations in glass-forming liq-
uids and polymers [1,2]. In particular, the structur-
al or a relaxation time, sa, becomes exceedingly
long. As a ®rst analytic scheme the mode coupling
theory [3,4] describes thermal disordering of local
crystalline structures and predicts onset of glassy
slowing down, but it predicts no long range corre-
lations. As the temperature is further lowered,
however, we naturally expect that dynamics in
glasses should be cooperative, involving many
molecules, owing to con®guration restrictions [5±
8]. Adam and Gibbs [5] speculated that particle
motions over the interparticle distance or the po-
tential barrier can take place only collectively in
cooperatively rearranging regions (CRR) and such

regions have a minimum size which grows as tem-
perature is decreased. Our recent MD simulation
in two dimensions [9] has demonstrated that such
CRR may be identi®ed as weakly bonded regions
with various sizes. Their maximum size, n, grows
as s1=4

a and those smaller than n are insensitive to
T, so they are analogous to the critical ¯uctuations
in Ising systems.

Most previous papers so far are concerned with
near-equilibrium properties such as relaxations of
the density time-correlation functions or dielectric
response. The aim of this paper is to demonstrate
the presence of a new problem in far-from-equilib-
rium properties of glassy states. Here we are inter-
ested in nonlinear response when the shear rate, _c,
exceeds 1=sa. Such nonlinear regimes have been
studied in various complex ¯uids [10].

In their experiment, Simmons et al. [11] found
that the viscosity, g� _c� � rxy= _c, exhibits marked
shear-thinning behavior, g� _c� � g�0�=�1� _csg�, in
soda lime±silica glasses in steady states under
shear. Here we expect sg � sa [12]. This remarkably
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simple result indicates that the shear stress ap-
proaches a limiting stress, rlim � g�0�=sg, which is
of the order of the shear modulus insensitive to
T, for _c� 1=sa. Moreover, after application of
shear, they also observed overshoots of the shear
stress before approach to steady states. Very re-
cently we have applied shear in our MD simula-
tion of a two-dimensional binary mixture [13] to
have reproduced shear-thinning behavior in agree-
ment with the experiment. This paper summarizes
our simulation results in two dimensions [9,13] and
presents new results in three dimensions.

2. MD simulations

We perform MD simulations in two dimensions
(2D) and three dimensions (3D) on binary mix-
tures composed of two di�erent atomic species, 1
and 2, with N1 � N2 � 5000 particles. Parameters
chosen are mostly common in 2D and 3D. They
interact via the soft-core potential, vab�r� �
��rab=r�12

, with rab � �ra � rb�=2, where r is the
distance between two particles and a; b � 1; 2
[14,15]. The interaction is truncated at r � 4:5r1

in 2D and r � 3r1 in 3D. The leapfrog algorithm
is adopted to solve the di�erential equations with
a time step of 0:005s0. The space and time are mea-
sured in units of r1 and s0 � �m1r2

1=��1=2
. The mass

ratio is m2=m1 � 2, while the size ratio is
r2=r1 � 1:4 in 2D and r2=r1 � 1:2 in 3D. Our
two component systems remain amorphous at
low temperatures, because the di�erence of the
particle sizes prevents crystallization.

The average density is ®xed at n � 0:8=rd
1. This

density is so high such that all the pair distribution
functions gab�r� have a sharp peak at r � rab as
shown in Fig. 1 for 2D. Then our binary mixtures
may be fairly mapped onto one-component ¯uids
with the soft-core potential [16,17], whose thermo-
dynamic states are characterized by a single pa-
rameter,

Ceff � n��=kBT �d=12
X
a;b

xaxbr
d
ab: �1�

Here x1 and x2 are the compositions of the two
components and are 1/2 in our case. Data are ta-
ken at Ceff � 1:0; 1:1; 1:2; 1:3; 1:4 for 2D and

1.15, 1.30, 1.40, 1.45, 1.5 for 3D. The correspond-
ing temperature is 2.54, 1.43, 0.850, 0.526, 0.337 in
2D and is 0.772, 0.473, 0.352, 0.306, 0.267, 0.234 in
3D, respectively, in units of �=kB. We detect no en-
hancement of the ¯uctuations in the density di�er-
ence n1 ÿ n2 at any wave numbers. The system is
also con®rmed to be highly incompressible in the
sense that the volume fraction rd

1n1 � rd
2n2 exhibits

very small ¯uctuations at wave numbers smaller
than the ®rst peak position.

The system is quiescent for t < 0 and is sheared
for t > 0. To this end we add the average velocity,
_cy, to the velocities of all the particles in the x di-
rection at t � 0 and afterwards maintain the shear
¯ow by using the Lee±Edwards boundary condi-
tion [18,19]. Then steady states are realized after
a transient time. In our case shear ¯ow serves to
destroy glassy structures and produces no long
range structure. The temperature is kept constant
using the Gaussian constraint thermostat [18,19].

3. Quiescent states

For each atomic con®guration given at time t0, a
pair of atoms i and j is considered to be bonded if

Fig. 1. The pair correlation functions gab�r� at Ceff � 1:4 in 2D

as functions of r=rab.
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rij�t0� � jri�t0� ÿ rj�t0�j6A1rab; �2�
where i and j belong to the species a and b, respec-
tively, and rab � 1

2
�ra � rb�. We have set A1� 1.1

for 2D and 1.5 for 3D. However, our bond de®ni-
tion is insensitive to A1 as long as it is somewhat
larger than 1 and smaller than the second peak dis-
tances divided by rab. This is because all the pair
distribution functions gab�r� have a sharp peak at
r � rab as shown in Fig. 1. The bonds thus de®ned
have lengths close to rab and the polygons com-
posed of the bonds are mostly triangles as shown
in Fig. 2. After a lapse of time Dt a pair is regarded
to have been broken if

rij�t0 � Dt� > A2rab �3�
with A2� 1.6 for 2D and 1.5 for 3D. This de®ni-
tion of bond breakage is also insensitive to A2.
Then the number of the surviving bonds is found
to decrease exponentially as exp�ÿDt=sb�0��,
which has been con®rmed for Dt K sb�0� for each
T . The bond breakage time, sb�0�, is displayed in
Fig. 3 as a function of the inverse temperature. It
is of the order of the a relaxation time, sa [9]. To
be precise, however, the relaxation is better
described by the stretched exponential form

exp �ÿ�Dt=sb�0��a� on longer time scales particular-
ly in 3D, where the exponent a decreases with low-
ering T from 1 down to 0.6 at the lowest T.

Fig. 4 displays the bonds broken within the
time interval, �t0; t0 � 0:05sb�, at Ceff � 1:0 and
1.3 in 2D. The center positions Rij � �12 ri�t0��
rj�t0�� at the initial time, t0, of the pairs broken
within the time interval are depicted here. For
the glassy case Ceff � 1:3, the broken bonds form
clusters with various sizes and are heterogeneous,
whereas for the liquid case Ceff � 1, the inhomoge-
neity is much smaller. As can be clearly seen, ele-
mentary processes of bond breakage are string-
like jump motions involving several particles even
in liquid states, due to the high density of our sys-
tem. Remarkably, such strings aggregate in glassy
states. Fig. 5 shows the broken bonds in two
consecutive time intervals, �t0; t0 � 0:1sb� and
�t0 � 0:1sb; t0 � 0:2sb�, at Ceff � 1:4 in 2D. The ini-
tial times at which the bonds are de®ned are t0 and
t0 � 0:1sb, respectively. We can see that the clusters
of broken bonds in the two time intervals mostly
overlap or are adjacent to each other. Therefore,
weakly bonded regions or relatively active regions
migrate in space on the time scale of sb.

Fig. 2. Bonds de®ned at a given time at Ceff � 1:4 in 2D. Their

lengths are mostly close to rab. The diameters of the circles here

are equal to ra. One sixteenth of the total system is shown.

Fig. 3. Temperature dependence of the bond breakage time

sb�0� (d) in 2D and (}) in 3D, where T � � kBT=�.
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We next calculate the structure factor, Sb�q�,
(Fig. 6) of the broken bonds de®ned by

Sb�q� � Nÿ1
b

X
exp�iq � Rij�

��� ���2� �
: �4�

The summation is over the broken pairs, Nb is the
total number of the broken bonds, and the angular
average over the direction of the wave vector is ta-
ken. Furthermore, taking the averages of 4±20 se-
quential con®gurations, we ®nd that Sb�q� can be
approximated by the Ornstein±Zernike form,

Fig. 5. Broken bonds in two consecutive time intervals,

�t0; t0 � 0:1sb� (h) and �t0 � 0:1sb; t0 � 0:2sb� (d), at Ceff � 1:4
in 2D. The arrow indicates n.

Fig. 6. Sb�q� of the broken bond density in 2D. The insert

shows 1=Sb�q� vs q2, from which nÿ2 is determined.

Fig. 4. Snapshots of the broken bonds at Ceff � 1:0 and 1.3 in 2D. The time interval is 0:05sb�0�, so 5% of the initial bonds are broken

here. The arrows indicate n.
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Sb�q� � Sb�0�=�1� n2q2�: �5�
Interestingly, Sb�0� / n2 and the large q behavior
of Sb�q� is insensitive to T as in Ising systems near
the critical point.

We have con®rmed that the correlation length,
n, is insensitive to the width of the time interval,
Dt, as long as it is considerably shorter than
sb�0� [9].

4. Sheared states

Under shear the bond breakage rate simply
consists of the thermal breakage rate and a
shear-induced breakage rate as

1=sb� _c� � 1=sb�0� � Ab _c; �6�
where Ab � 0:57 in 2D and 0.80 in 3D, and
sb�0� � sa. Thus, for strong shear _csa � 1, disor-
dering of glassy structures is achieved by shear-in-
duced jump motions. In our systems, furthermore,
the structure factor Sb�q� of the broken bonds is
only weakly dependent on the direction of the
wave vector q and may be ®tted to the Ornstein±
Zernike form. As shown in Figs. 7 and 8, n� _c� is
uniquely determined by sb� _c� only as

n� _c� � sb� _c�1=z �7�
for any Ceff and _c used in our simulations. The dy-
namic exponent z is 4 in 2D and 2 in 3D. Notice
that the data points at the largest n are those at ze-
ro shear for each Ceff . This relation suggests that
the steady states may be characterized by a single
parameter, say n, and that each steady state in
the non-Newtonian regime may be mapped onto
a quiescent state at a higher temperature with the
same n.

We have also found that the viscosity is deter-
mined solely by sb� _c� as

g� _c� � Agsb� _c� � gB

� Agsb�0�=�1� Ab _csb�0�� � gB; �8�
where Ag and gB are 0.34 and 6.25 in 2D, and 0.24
and 2.2 in 3D, respectively. The limiting shear
stress rlim � Ag=Ab is realizable for 1=sa �
_c� rmin=gB, and is 0.59 in 2D and 0.30 in 3D in
units of �=r2

1. Figs. 9 and 10 show that the ratio

�g� _c� ÿ gB�=�g�0� ÿ gB� can be ®tted to the univer-
sal curve 1=�1� Abx� with x � _csb�0� independent-
ly of Ceff .

Fig. 7. Universal relation between n� _c� and sb� _c� in 2D. The line

of the slope 1/4 is a viewing guide.

Fig. 8. Universal relation between n� _c� and sb� _c� in 3D. The line

of the slope 1/2 is a viewing guide.

38 A. Onuki, R. Yamamoto / Journal of Non-Crystalline Solids 235±237 (1998) 34±40



We have also examined the transient behavior
of the shear stress as a function of time after appli-
cation of shear to ®nd stress overshoots in glassy
states in accord with the experiments. This aspect
will be discussed in a forthcoming paper.

5. Concluding remarks

Most observations in this work remain unex-
plained. But they pose new problems and suggest
new experiments. We make some comments be-
low.

(1) The weakly bonded regions in Figs. 4 and 5
are purely dynamical objects. Such large scale het-
erogeneities cannot be found in snapshots of the
densities, the stress tensor, the kinetic energy, etc.
Important issues are then how they evolve in space
and time and why they look so similar to the crit-
ical ¯uctuations in Ising systems.

(2) In our systems we have not yet detected es-
sential di�erences between 2D and 3D except in
the value of the dynamic exponent z.

(3) Our systems are highly compressed. In fact
the volume fraction / of the soft-core regions is
0.93 in 2D and 0.57 in 3D. Then even slight aniso-
tropic changes of the pair correlation functions,
gab�r�, near the ®rst peak (� rab) gives rise to the
limiting shear stress rlim, which is K5% of the pres-
sure in our case. On the other hand, in many ¯uid
systems such as near-critical ¯uids or polymer so-
lutions the structure factor of the composition
can be anisotropic at long wavelengths when _c ex-
ceeds a small underlying relaxation rate [10].

(4) In our case there is no tendency of phase
separation. However, there can be cases in which
the composition ¯uctuations are increased towards
glass transition temperatures. It is of great interest
how the two transitions a�ect each other.

(5) Shear ¯ow can induce composition ¯uctua-
tion enhancement in asymmetric viscoelastic mix-
tures, when emergence of less viscous regions can
reduce the e�ective viscosity [10]. This e�ect should
come into play also in glassy states, for example,
for large enough size ratios or in the presence of
small attraction between the two components.

(6) The mechanism of the non-Newtonian be-
havior in supercooled liquids is new and should
be further examined in experiments. For example,
polymers should exhibit pronounced non-Newton-
ian behavior, as the glass transition is approached,
even without entanglement.

(7) We assume that long range density ¯uctua-
tions as observed by Fischer [20] are nonexistent
in liquids composed of structureless particles. They

Fig. 9. �g� _c� ÿ gB�=�g�0� ÿ gB� versus _csb�0� in 2D.

Fig. 10. �g� _c� ÿ gB�=�g�0� ÿ gB� versus _csb�0� in 3D.
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should originate from small density variations in-
duced by nematic ordering of anisotropic mole-
cules as revealed by a simulation [21] and as
observed upon crystallization [22].
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