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Abstract. Phase transitions in fluids can be drastically altered by shear flow and heat flow.
We briefly discuss the mechanisms of shear effects in three very different fluids. They are near-
critical fluids, semidilute polymer solutions in theta solvent, and highly supercooled liquids. As
regards heat flow problems, we considefe near the superfluid transition, which is extremely
sensitive to heat flow and gravity in the vicinity of thepoint. In particular, heat flow applied

from above and gravity give rise to competing effects, producing unique nonequilibrium states,
in which the temperature gradieMT and the transition temperature gradiévt; (p) under
gravity cancel. (i) In a normal-fluid state, the resultant temperature differEne&; (p) can be
extremely small and can even be of order 1 nK. (ii) When a superfluid region expands upward into
a normal-fluid region, we conjecture that the superfluid velocity approaches a critical velocity,
leading to dense generation of vortices whose role is to produce a temperature gradient equal
to VT (p).

1. Introduction

Fluids near phase transitions can be very sensitive to a small change of a system parameter
such as the temperature or the pressure, because it can trigger phase transitions via spinodal
decomposition or nucleation. There can also be a number of nonequilibrium situations in
which disturbances such as shear flow, heat flow, or sound waves are applied from outside.
In particular, shear flow effects have been studied extensively in various fluid systems [1].
Such effects are of great technological importance in polymeric systems. In addition we
have recently started molecular dynamics simulations on nonlinear rheology in supercooled
liquids [2—4]. The effect of shear in this case is very much unique and is not well known.

It should be instructive to compare the mechanisms of nonlinear shear effects in the three
representative cases of near-critical fluids, semidilute polymer solutions, and supercooled
liquids.

Nonlinear effects of heat flow near the superfluid transition probably represent one of
the most dramatic heat flow effects, though high-precision thermometry is required for such
experiments [5-9]. This is because a superfluid phase exhibits only extremely small thermal
resistance arising from boundary effects or quantum vortices, whereas a normal-fluid phase
has a finite thermal conductivity. Furthermore, as will be discussed in this paper, it has
recently been recognized that gravity in the downward direction and heat flow applied from
above give rise to competing effects, and produce some surprising nonequilibrium states,
either transient or steady. Because there can be other possibilities left unexplored, it should
be again instructive to review these recent developments.
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2. Nonlinear response regimes in shear flow

2.1. How can the flow field influence the critical fluctuations?

Near-critical binary fluid mixtures exhibit large-scale composition fluctuations with sizes of
the order of the correlation length which grows near the critical point and easily extends
to a length of the order of £0A. They undergo diffusive relaxation with the diffusion
constant being given by the Einstein—Stokes formula

D = kT /6mné (2.1)

wheren is the shear viscosity. The physical picture behind this is clear: the composition
fluctuations are randomly convected by the velocity field fluctuations, which have
magnitudes of ordev(¢) = (kzT/p£%)Y2 and short lifetimes of order, (&) = (p/n)&2 on

the spatial scale af. ThenD is estimated as(£)%, (&), leading to the above formula. The
dynamics of the composition fluctuations is thus governed by the hydrodynamic interaction.
The average lifetime of the composition fluctuations is enlarged as

T = £2/D = 6rnE3/kpT. (2.2)

This time can easily be of the ordef s in well controlled experiments. We confirm that
,(§) € Te-

We then naturally expect strong deformations of the fluctuations in flow field when the
shear rateS exceedsrgl, which is the condition for strong shear:

Ste > 1. (2.3)

At the critical composition we have = & (T /T, — 1)~" with & ~ 1 Aandv = 0.63, so
we find the crossover reduced temperature:

T, = (6mnEs/kpT)"> SY3 oc S5, (2.4)
There also arises a new characteristic wavenunabémom
ke =&y t) o ST3, (2.5)

In the strong-shear regime, the fluctuations with wavenumbers larger ithame not
much affected by the shear flow within their lifetimes and can be treated by the singular
perturbation method (the dynamic renormalization group method). On the other hand, those
with wavenumbers smaller thah are strongly affected by the shear flow before their
dissipation, but their effects can be calculated by the normal perturbation method. The
above procedure can be performed analytically if use is made of-thgansion method.
That is, the system dimensionalityis supposed to be slightly below 4, ley= 4 — d.

The Fourier componenf,(¢) of the composition field) (r, t) is governed by a linear
Langevin equation at long wavelengths € k) [1, 10]:

d d
— Vg = Sqx — Vg — Lrg®(re + 2 Vg + Orq (2.6)
at gy
where Ly = kT /6mnk. (xS~Y3) is the renormalized kinetic coefficient and
re =& T2 TNT — To(9)] (2.7)

depends on the reduced temperature linearly. That is, the critical expgnfemtstrong

shear is equal to the mean-field value 1. These results are obvious, because the upper
cut-off wavenumber of the renormalization is given hyfor strong shear. The critical
temperature is slightly shifted downwards Bg0) — 7,.(S) ~ 0.17,t, due to the nonlinear
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Figure 1. The reduced scattering intensiky)/ /., (¢) as a function ofp = tan‘l(qx/qy) in the
polar coordinate ai” — 7, = 1.5 mK [11]. The horizontal axis{ = 0) is parallel to the flow
(llz), while the vertical axis¢ = 7/2) is in the velocity gradient direction. Results for two
scattering angles§ = 2° (¢ = 5200 cntl) and® = 10° (¢ = 26 000 cnTl), are shown. The
shear rates ar§ = 903 512 288 163 and 92 5.

hsY

hydrodynamic interaction in steady states. The random fégges related toLy via the
fluctuation-dissipation relation. The steady-state structure fdaigr = (|,|?) satisfies

d
[2LRq2<rR + 4% — Sqx ﬁ}uq) = 2Lgq? (2.8)
;

where the right-hand side arises fraig,(r) and the Ornstein—Zernike form follows only
for g, = 0. We give a crude approximant extrapolating the overall anisotropic behaviours:

1(q) = [rr + ck¥®1g1?° + g7 (2.9)

wherec = 0.76 and the error is less than about 20%. At smal{<k?), I1(q) o |g.|7%°in
most of the directions af for ¢ < k.. This means substantial suppression of the fluctuations
below the region of equilibrium critical behaviouk,, (¢) o< 1/(6~2 + ¢?). In figure 1 we
show such behaviour af(q)/I.,(g) as measured by Beysens’ group for a critical mixture
of aniline and cyclohexane [11].

The critical dimensionality in sheared fluids is reduced from 4 to 2.4. It is usually
said that the critical behaviour acquires mean-field character for strong shear. The precise
meaning of this statement is that we may linearize the dynamic equations once we have
eliminated the fluctuations with wavenumbers larger thaim three dimensions. We should
not forget of the fact that the linearized dynamic equations are still highly complex, with
the coefficients nonlinearly dependent &n

We also mention that stirring can strongly affect the critical fluctuations [12-14]. It
is known that the maximum shear rass in turbulence is given by(n/p)k3, where
kqs = Ly* Re¥* is the Kolmogorov cut-off wavenumber,o being the size of the stirrer
and Re being the Reynolds number, much larger than 1. In the case of near-critical fluids
the composition fluctuations have sizes much shorter than the size of the smallest eddies
(~1/k4) and are most effectively strained by the smallest eddies. These eddies turn over
on the timescale of /S,, during which time the composition fluctuations are acted on by
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the eddies. Experiments showed that there is no sharp phase transition in turbulence, and
the scattered light intensity increases gradually but dramatically sslowered belowr,.

As in the case of laminar shear, there is a strong-shear regime determingf;by 1, in

which the fluctuations are strongly suppressed by random shear.

2.2. How can shear stress induce composition fluctuations in highly viscoelastic fluids?

Effects of shear on polymeric systems are of great technological importance, but are
generally very complex [1, 15]. While shear-induced mixing is usually observed, application
of shear or extensional flow sometimes induces a large increase of the turbidity, indicating
shear-induced composition heterogeneities or demixing, in highly viscoelastic fluid mixtures.
Semidilute polymer solutions near the coexistence curve most unambiguously exhibit shear-
induced demixing [16—19], where the tendency towards demixing is dramatically intensified
by increase of the molecular weight (>2 x 10°) and the polymer volume fraction above
the overlapping value.

For near-equilibrium, semidilute polymer solutions, Brochard and de Gennes noticed
the presence of a long viscoelastic length [20]. That is, the relative diffusion between
the polymer and the solvent on the spatial scalel dbkes place on the timescale of
¢?/D,,, whereD,, ~ kT /6mn,& is the so-called cooperative diffusion constant anslthe
correlation length (or the blob size). This time can be much shorter than the disentanglement
time ¢ characterizing the viscoelastic relaxation, and balance of these two times gives

‘i:ve = (Dcof)l/2~ (210)

The composition fluctuations with sizes smaller tifgnshould behave as in gels [21]. Thus
the time correlation functionl,, (g, 1) = (Yq(t)¥4(0)*) of the composition fluctuations
crosses over from the fluid-like behaviour to the gel-like behaviouy at &' with
increasingg.

In our shear flow problem, phase separation and viscoelastic deformations are
inseparably coupled. We then need to develop a systematic dynamical theory of viscoelastic
fluids treating the composition heterogeneity [22—-26]. From such efforts there has arisen a
new concept of a dynamical coupling between stress and diffusion. We adopt a two-fluid
description to illustrate this concept below. Let the two components, 1 and 2, of the mixture
be convected at the velocitieg andwv;. We consider only very slow motions, neglecting
the acceleration and the temperature inhomogeneity. The equations of motion for the two
components are then [24]

0

LG VL= =P Viur—¢(wr—v)+F1 =0 (2.11)
0

P2 V2 = —p2 Vir—¢(v2—v) +F=0 (2.12)

where p; and p, are the mass densitieg; and u, are chemical potentials, andis the
coefficient of friction between the two components. and F;, are the force densities arising
from the network stress and the background viscosity. If the former dominate over the
latter, the sum of the forces is

F+FKhaV.o. (2.13)

The key question then is how the network stress is divided between the two components,
on which the relative diffusion is crucially dependent. In fact, dividing (2.11)obyand
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(2.12) by p, and subtracting these equations, we obtain the relative velocity:

0102 1 1
v — V2 = —[—V(Ml—M2)+ —F — —F2:|- (2.14)
¢p P1 02
In polymer solutions and gels, the network stress acts on the polymer (the component 1)

and not directly on the solvent (the component 2), and it holds a one-sided stress division:
FL=V.o =0 (2.15)
which gives
V1 — vy = —;—;[pl V(s — o) — V-7 1. (2.16)
Imbalance of the network stres¥’( o # 0) can lead to relative motion. This form of —v;
was originally proposed by Tanala al [21] for polymer gels for analysing dynamic light
scattering.

For entangled polymer blends consisting of two kinds of polymer chain, an intermediate
division [24] has been proposed in the reptation scheme:

F = <ﬂ + pl—f%)v- e 2.17)
P P
P = (& _ _plg’za)v. - (2.18)
P P
The parametew represents dynamical asymmetry, and is of the form
a = (N1do1 — N28o2)/($1N1801 + ¢p2N2802) (2.19)

in terms of the polymerization indice¥; and N,, the monomer friction constants; and
Loz, and the volume fractiong; and ¢, = 1 — ¢1. Then, for polymer blends, equation
(2.14) becomes
PPz
¢p?
This coupling ¢ # 0) in dynamically asymmetric mixtures can give rise to a profound
influence on the dynamic scattering and phase separation [27, 28]. We give here only some
of its implications for shear flow, below.

We apply shear flow to a semidilute polymer solution at a fixed volume fragtioAt
very long wavelengths where the timescale of the composition is longer than the viscoelastic
time 7, the Fourier component of the polymer volume fraction obeys
ad a L [

207
— g = Sqy — g — ————— | g¢° Cq%) — =—Sq.q, 0 2.21
3t¢q q aqy(pq 1+€U2eq2 q°(ro+Cq°) b 3¢ q q):|¢q+ Rq ( )

where the coefficient, decreases with lowerin@, n (xt) is the very large solution
viscosity, andan/d¢ ~ 6n/¢p. It is instructive to compare the above equation with
(2.6). The new aspects are as follows. First, the kinetic coefficient is dependent on
as L/[1 + £24?] in terms of the viscoelastic length,, to which the noise terndg, is
related via the fluctuation-dissipation theorem. Second, the dynamic coupling gives rise to
the very large anisotropic termxg,q,) [22], leading to anisotropic fluctuation enhancement
even above the coexistence curvg & 0). The growth of the fluctuations is maximum
at g, = gy, whereas the maximum occurs fgr = —q, in near-critical fluids under weak
shear.

However, equation (2.21) should be further modified in wavenumber regions where the
composition lifetime is comparable to or shorter thanWe generally need to construct a

v — vy =—""2[p V(1 — p2) —aV-a]. (2.20)
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Figure 2. Snapshots of the polymer volume fraction divided by the critical vadig;, y, 1) =
o(x,y,1)/¢., immediately after application of the shear in (a) and in a dynamically steady
state in (b). Here the temperatureis at the critical temperaturg., but the average polymer
volume fraction(¢) is double.. The space and time are measured in unit§5¢8)/2¢ and

10 = (25/6)£2/D,,, where¢ is the correlation length and,, is the cooperative diffusion
constant. The solution viscosity is B3times the solvent viscosity, and the stress relaxation
time T is 5.1 timestg.

Ginzburg—Landau scheme in which the composition and the chain deformation (which gives
rise to the network stress) are coupled [1]. Although a number of experimental data have
been accumulated, we give here computer simulation results of shear-induced composition
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fluctuations above the coexistence curve in figure 2 [26]. Here a semidilute solution is at
rest forr < 0 and sheared witl§ = 0.25/t for r > 0. In an initial stage in (a), we can see

the fluctuation enhancement in the directiongof= ¢,. After a transient time, the system
tends to a dynamically steady state as shown in (b), where the fluctuations are turbulently
enhanced at various spatial scales. The fluctuation level is huge and is comparable to those
in spinodal decomposition. We also observe large chaotic fluctuations of the stress [26].
See more description in the figure caption.

2.3. How can shear flow influence glassy dynamics?

Particle motions in supercooled liquids around the glass transition temperBiuage
severely restricted or jammed, giving rise to slow relaxations and highly viscoelastic
behaviour characterized by the structuraloerelaxation timer, [29]. In glassy states,
rearrangements of particle configurations or jump motions constitute elementary dynamical
processes, though they are very rare events. It is also naturally expected that the
rearrangements take place collectivelyclasterswhose sizes increase at low temperatures.
Complexity of glassy dynamics stems from cooperativity triggered by spontaneously created
disorder in an amorphous environment. Such an idea was first presented by Adam and Gibbs
[30], who invented the terngooperatively rearranging region€CRR). In accord with this
picture, recent molecular dynamics simulations have detected spatial heterogeneities among
relatively active and inactive regions in supercooled states [31, 32, 2]. Our recent work [2]
on a binary mixture interacting via the soft-core potentials first characterized such patterns
guantitatively; the size difference of the radi, ando, of the two components prevents
crystallization. In particular, we have determined the correlation leqhgthich grows as’

is lowered. That is, introducing bonds between adjacent particle pairs, we have found that
their breakage occurs on the timescalecgfand broken bonds in an appropriately chosen
time interval closely resemble the critical fluctuations in Ising spin systems.

We then consider a new nonequilibrium situation by applying a shear flow to supercooled
liquids [3, 4]. We should recognize that the applied shear can induce jump motions at the
rate S. Therefore, we are readily in a nonlinear regirfig, > 1, where configurational
rearrangements are dominantly induced by shear, becatgeid the extremely small
thermal jumping rate. As a result, dynamical properties in this nonlinear regime should
become insensitive to the temperature, but are instead determin&d Ibyfact, Simmons
et al found that the viscosity)(S) = o,,/S exhibits strong, shear-thinning behaviour:

n($) =n0)/1+ St (2.22)

in soda-lime—silica glasses in steady states under shear [33], whira long rheological
time expected to be of order,. Thus the shear stress, tends to a limiting stress
(~n(0)/7,) in the nonlinear regime.

Our molecular dynamics simulations in two and three dimensions are generally in
agreement with the experiment [33]. In particular, we show the viscosity data in three
dimensions. Figure 3(a) shows dramatic shear-thinning behaviour in the nonlinear regime
where Sz, > 1. Figure 3(b) demonstrates that the data can be fitted to the universal form

n(S) = Ay/(t(0) "+ ApS) + 1 (2.23)

whereA, = 0.24, A, = 0.8, andn = 2.2 in our model fluid in appropriate dimensionless
units. 7,(0) is a bond breakage time or a time for jump motion from cages [2—-4]. We may
determine the so-called-relaxation timer, from the decay of the self-time-correlation
function F;(q, t) from its initial value 1. That is, by setting (¢, 7,) = € * atq = 27 /01,

we have found, = 0.17,.
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Figure 3. (a) The nonlinear shear viscosity(S) = o,,/S. (b) The universal curve of
n(S)—np)/(m(0)—np) versusSt,(0). We use a 3D supercooled binary fluid mixture interacting
via the soft-core potentials,s(r) = €[(0q + 05)/2r]*2, and composed of foparticles. Here
oy (@ = 1,2) are the soft-core diameters afid = kpT /e is the dimensionless temperature.
The shear rate and the shear viscosity are measured in units of microscopic quantities.

The above shear-thinning behaviour may be explained as follows. For each structural
rearrangement a microscopic potential energy, writtery,as transformed into random
thermal motions of the surrounding particles. The resultant heat production rate in the
nonlinear regime is estimated as

R ~ neS (2.24)

wheren is the number density. Becaugss related to the viscosity bi = 0y S = 1(85)S?,
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we obtaino,, = n(S)S ~ ne, in agreement with (2.22). Thus even a very small shear
can greatly accelerate thmicroscopicrearrangement processes in supercooled liquids.
Interestingly, similajamming dynamictas begun to be recognized also in the rheology of
foams [34—-36] and granular materials [37] composed of large elements. There, the thermal
motions are nearly nonexistent, whereas they are overwhelming in supercooled liquids.

As a closely related problem, understanding the mechanical properties of amorphous
metals such as GuZrsz has been of great technological importance [38-40]. They are
usually ductile in spite of their high strength. At low temperatufesS 0.6 ~ 0.77,
localized bands {1 um), where zonal slip occurs, have been observed above a certain
yield stress. At relatively high temperaturds > 0.6 ~ 0.77,, on the other hand,
shear deformations are inducedmogeneouslfon macroscopic scales) throughout samples,
giving rise to viscous flow with strong, shear-thinning behaviour. In particular, in their 3D
simulations Takeuchi and co-workers [40] followed atomic motions after application of a
small shear strain to observe heterogeneities ampongdy and closely packed regianshich
are essentially the same entities as in the simulations of supercooled liquids [2, 4, 31, 32].

3. “He near the superfluid transition under heat flow

“He near the superfluid transition is extremely sensitive to applied heat flow. The thermal
conductivity in the normal-fluid phasd'(> T,) grows as [41, 42]

AZA(T/T, — )% (3.1)

as T — T, in the linear response regime, The exponeptis of order 0.44 and

A* ~ 120 erg cm! K=1. In the superfluid phase belo®, on the other hand, a thermal
counterflow is produced in the heat flow direction, in which there is no net mass current
(psvs + pnv, = 0) but the normal-fluid component carries he@t£ psTv,) without there

being appreciable mutual interaction between the two components. A very small thermal
resistance arises from quantum vortices, however. Herexc (1 — T/T,)" (v = 2/3),

on = p — ps, Vs, andv, are the densities and velocities of the superfluid and normal-fluid
components, respectivelyr ands are the mass density and entropy per unit mass. In this
geometry, at the two ends of the cell, phase conversion between the two components takes
place and small temperature jumps are produced (the Kapitza boundary resistance).

3.1. A He |-He Il interface

It is natural to expect nonlinear response regimes with respect to hea® flitety close to

T, [5-8]. In particular, we may consider a situation in which the temperature at one end
of the cell is aboveT;, and that at the other end is slightly beldly. The temperature in

the cooler side should be nearly constant because of the thermal counterflow, whereas it
has a much larger gradient on the normal-fluid side. Then a He I-He Il interface emerges
separating the two phases, across which the temperature gradient is discontinuous. This
interface is very much a unique nonequilibrium object. It always appears terin a
normal-fluid state is cooled from the boundary beldwor when*He in a superfluid state

is warmed from the boundary abovg.

Let us discuss the interface structure using some scaling arguments [5]. On the super-
fluid side the correlation length is given lgy= &_t_" where&_ ~ 1 A is a microscopic
length,v = 2/3 is the usual critical exponent, ang = 1—T7/T, is the reduced temperature.

The complex order parametér depends sinusoidally on the coordinatén the heat flow



11482 A Onuki

direction as exp-ikx), wherek = muv,/h in terms of the*He massn and the superfluid
velocity v;. The heat fluxQ is expressed as

0 = psT|v,| = sTps|vg| = (hsT /m) psk. (3.2)
Here v, should be smaller than a critical value:

Flow-carrying states in which a complex order parameter behaves asexpecome
unstable forks > 1/+/3 against long-wavelength perturbations of the phase [43, 44]. (This
is generally called the Eckhaus instability in nonlinear dynamics [45].) As a theoretical
estimate indicated [5]k¢ in the two-phase coexistence is smaller than but of the same
order as 1v/3. Thus, the two-phase structure is stable theoretically. However, it is much
larger than a threshold value of036, above which vortex nucleation becomes appreciable
nearT, [46]. Therefore, we expect a considerable amount of vortices on the superfluid side.
As a rough estimate we set~ £~1 in (3.2) to obtain

Too ~ (mé&o_ /RsTp})** Q3" (3.4)

where we have set, = p}(1— T/T;)%3. The coefficient in front of0¥* is of order 108
with Q in erg cnt? s~1. The correlation length is

£~ (hsTpi&-/m)? QY2 (3.5)

with the coefficient of order % 1073 in cgs units.

We may also discuss the structure using scaling arguments on the normal-fluid side.
That is, a characteristic reduced temperattyeand lengthé, may be introduced by the
heat conduction relation

0~ Wty ) (Titg/60) (3.6)
and the correlation length relation

~2/3
§o =80+ /

aboveT;, with &, ~ 1 A Then,
T ~ (Q&oy/ Tya )Y A=) (3.7)
Eg ~ Eo0r (QEoy/ Thia™) ™"/ v=s), (3.8)

These quantities are slightly different frory, and¢ in (3.4) and (3.5) becauseg, > 1/3,
but they are numerically of the same order. The interface thickness is of ®ride(3.5)
or &y in (3.8). UnlessQ is very small, it is very thin compared with characteristic sizes
of thermometers. IfQ is made very small{1 erg cnt? s71), the interface structure is
determined by gravity on the Earth as will be discussed below (3.18).

The interface profile can be calculated approximately or numerically on the basis of
a time-dependent Ginzburg—Landau model [47, 48]. It is known that the complex order
parameter and the temperature (or the entropy) constitute a closed set of dynamic equations
near thei-point (the F model [48]). Here we make them dimensionless by appropriate
scalings [5]:

%\y =ia AV —T [A - VZ+ W] ¥ (3.9)

3 1
E(A—Ea2|\lf|2> =aV-J,+V-1AVA (3.10)
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wherea (~1) is a positive constant, arid (=complex) and. are the dimensionless kinetic
coefficients expected to be of order 1 (in the same notation as for the original thermal
conductivity). In the dimensionless formd; is the complex order parameted, is the
reduced temperature, ant — %az|\lf|2 is the entropy deviation decreasing with ordering
(J¥|? > 0). Let us consider a one-dimensional steady solution under the following boundary
conditions:

A— -1 U — (1— k?)Y2egikx (asx — —o0)

(3.11)
A — 00 v —0 (asx — 00).

Then (3.9) and (3.10) may be rewritten as

o? i
—W=|—-14(1-—)A+1D+ VP 3.12
ow=[-1+(1- 5 )+ v+ 1wr] (312
o A =Re = (A+1)|v? (3.13)
dx2” A '

where Ré&- - -) denotes taking the real part, and the temperature dependehdg rméglected.
These coupled equations are analogous to those for an interface in type-l superconductors in
magnetic fields [49]. In the superconductor cadds the vector potential and? appears
instead of(1 — i/ab1)(A + 1) in (3.12). The temperatur@ — T,, temperature gradient
VT, and heat flowQ in our helium case correspond to the vector poterdiaimagnetic
induction B = rot A, and externally applied magnetic field in the superconductor case,
respectively. The relatiol, — T o« H at the critical magnetic field [49] corresponds to
(3.4) in our case, which is the unique relation betwgeand 1— T /T, in steady states.

The above equations cannot be solved analytically. As in the type-l superconductor
case [49], a possible analytic method is to introduce a GL parametefRe(1/'A)]~Y?)
and assume that « 1 [5]. In contrast, numerical solutions to the equations are easily
obtained. Figure 4 shows two-dimensional simulation results [50], where the side-wall
effect is taken into account. To this end we have generalized the model, equations (3.9)
and (3.19), to include the normal-fluid velocity, which vanishes at the boundary wall,
and assume a parabolic profile due to the shear viscosity. In figure 4(a) we can also see a
small temperature drop at the cooler emd= 0) which represents the Kapitza resistance.

3.2. Heat flow effects under gravity

Gravity effects can be crucial nedy [51, 47], because the transition temperature depends
on the pressure and hence on the height as

Tk(p) = TM(}p[l - Gx] (314)

where thex-axis is taken in the downward directioff,,, is the transition temperature at
the top & = 0), andG = pg|(dT/dp),|/ T, = 0.6 x 10-® cm~! on the Earth. Equilibrium
two-phase coexistence is realized for the case in which

T)Ltop >T > T}sz (315)

where a superfluid is placed in an upper region &ng is the bottom transition temperature.
The closeness to theline is represented by the local reduced temperature:
e=[T-T.(p)1/Th(p) =T/ Tuop — D +Gx =(T/Topor —1) + G(x — L) (3.16)
where L is the vertical cell length. The thicknegs and the typical reduced temperature

7, of the He I-He Il interface are determined by the scaling relatiépss & _t; 7° and
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Figure 4. The temperature profile in (a) and the superfluid density in (b) in two-phase coexistence

in “He. We have assumed a two-

dimensional celk @ < 66 and O< y < 42. The space is

measured in units of the correlation lengttin the superfluid region. The order parameteis

zero at the boundary walls.

These are solved to give

o

Gl,, wheregy_ ~ 1 A [47]

Te

(3.17)
(3.18)

2/5

§o-(80-G)~

£

(50-G)*°.
On the earth we have, ~ 10° and ¢, ~ 10-2 cm. It is worth noting that, and &

(3.5) are comparable fop ~ 1 erg cnt? s71.

Tg

n

At this value ofQ, a crossover occurs from
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an interface induced by heat flow to that induced by gravity. Space experiments are then
needed to enlarge the interface thickness without gravity effects.

Moreover, it has recently been recognized that intriguing nonequilibrium states are
realized in the presence of both gravity and heat flow, particularfydé is heated from
above [6, 52, 53, 9]. Hereafter we discuss two such examples.

3.2.1. The balance of gravity and heat flow in normal-fluid staté¥e apply a heat fluxQ
at the top(x = 0) in a normal-fluid state. We assume a steady state for simplicity, where
the heat conduction equation becomed? /dx = —Q. In terms ofe defined by (3.16) we
obtain
is =G — (Q/M'Typ)e™. (3.19)

dx
Use has been made of (3.1). Remarkably,xas increasedg tends to the fixed-point
value [6]

te = O'TG/ QY™ o (G/Q)*? (3.20)
exponentially as
e(x) —e. ox exp(—x/L.) with £, = &./(x,G). (3.21)

Here the temperature gradient due to heat flow and the critical temperature gradient due to
gravity cancel:

(%T)heat flow: %TA (in normal fluid. (3.22)
A sizable bulk region should thus be realizable, in which

e(x) = &, A= Q/T,G. (3.23)
On the Earth, we have

£ 22x10°0722 2= 10°0 0. = 4x1030722 (3.24)

in cgs units.

The approach ot to ¢. is expected to occur on rather short timescales. In fact, an
experiment was performed under slowly evolving transient conditions to confirm the formula
(3.20) and the balance (3.22) [9]. See [52, 53] for more arguments on this effect. The
normal-fluid state thus realized is in very much a unique nonequilibrium steady state, where
the distance to the-line can be an extremely small positive constant. In the experiment
[9], O was typically 1 erg cm? cm™%, which means that the value @f — T, (p) realized
was of order 1 nK. Theoretically we should develop renormalization group theory on this
steady state and characterize its stability and critical behaviour.

3.2.2. Vortex generation in a superfluid region expanding from beldw.the second
example, we prepare a normal-fluid state in equilibrium or heated from above. We then
suddenly lower the bottom reduced temperatgyeto a negative value below a certain
critical value to produce an embryo of superfluid at the bottom. The superfluid region
continues to grow into the upper normal-fluid region. It will not stop generally if the
top temperature is not controlled, but the interface velocity must be very low because a
large amount of entropy stored in the normal-fluid region needs to be extracted through the
superfluid region. Furthermore, there arises a puzzle: If the temperature is constant in the
superfluid region, the reduced temperatgiia (3.16) and hence also the superfluid density
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Figure 5. The superfluid region created at the bottom={ 160) and expanding towards the top

(x = 0) atr = 45615. (a) The superfluid density is plotted. There are many phase-slip centres in
the expanding superfluid region. The space and time are scaled with respe®t $01D3 cm

and 10%s. (b) T/Tipor — 1 (solid line) ands (dashed line) are plotted in the transient state
and are expanded in the inset. They are scaled with respecf$0<210~8. (c) The heat flux

0 scaled with respect to 6.8 erg cfs is shown, which arises from the thermal conductivity
for x < 80 and mostly from the thermal counterflow for> 80.

ps increase with the height, enlarging the entropy difference between the two phases as
the interface advances. Another interesting possibility is that vortices are spontaneously

created in the superfluid region, which will give rise to a temperature gradient balancing
the gravity-induced gradient. That is,

d ) d . .
—T = —T, (in expanding superfluid (3.25)
(dx vortex d'x g
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In our preliminary simulation [52] we have found that the above possibility is in fact the
case.
To take into account the gravity effect, we modify (3.9) to

%\y =ia AV —T[ee Y2 - V2 4 £ 1w )W (3.26)
wheree = A + G(x — L) is the reduced temperature (3.16). In the simulation we
measure the space, reduced temperature, and heat flow in unitset 1103 cm,
2.75 x 1078, and 68 erg cnt? s, respectively. The unit of time is about 10s.
Then G = 0.04 in these units on the Earth. The local correlation length is defined by
£ = L, tanh¢,/|¢|?®), wheret, is given by (3.17). The system is in a normal-fluid state
with ¢, = 2, andQ = 0.1 fort < 0. The top and bottom are at= 0 and L = 160,
respectively. The bottom reduced temperateyes then lowered to—-2 atr = 0 with

0 held fixed. Figure 5 shows data for= 45615: p,(x,t) = |¥(x,1)|? in panel (a),
Ax,t) =T (x, 1)/ Topor —1 ande(x, t) = T/ Typos — 1+ G(x — L) in panel (b), and the heat
flux Q(x,t) = —a Im(¥* 90w /dx) — A dA/dx in panel (c). Surprisingly, we find a number

of phase-slip centres [54], the one-dimensional counterpart of vortices, in (a). They are
rapidly varying in time and the temperature (solid line) has a gradient such ffutshed
line) becomes flat on average in the expanding superfluid region as shown in (b). This
confirms the balance (3.25). The heat fl@Xx, ¢) is shown in (c), which consists mostly

of the thermal counterflow in the superfluid region. The heat fix, at the bottom is
about 0.5, which is five times the heat flg;,, = QO = 0.1 at the top. We notice that
the superfluid velocity is equal t@(x, t)/|¥|? and is fluctuating around the critical value
1/+/3 from (c). In the real units this critical value correspond# t&/3m in (3.3) [43, 44].

For this value ofQ,,,, the timer,, at which the front of the superfluid region reaches the
top is estimated in the dimensionless units as

tir ~ L(Qin L)Y Y™ /(Qous — Qin) (3.27)

where we assum@;, = Q > 1/L and Q,,, > Q;,. The timet, increases dramatically
with increasingQ and L.
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In our simulation the density of phase-slip centres is very high and is roughly
independent of time. Thus the interior of the expanding superfluid region is homogeneous
and steady if the irregularities are averaged over the timescale of the phase-slip-centre
oscillation. The mechanism producing flats quite different from that of the levelling off
of ¢ in normal-fluid states. In fact, similar flatness still follows in the expanding superfluid
region even if we assume thatis independent ot. We have performed many similar
simulations and found that the formation of dense-phase-slip centres and the flattening of
& occur over wide ranges of), g,, and the coefficients in the model. Furthermore, we
may easily perform the above calculation in two dimensions as in reference [50] and have
already confirmed the emergence of a number of vortices and the same flattering of
the expanding superfluid region.

In one dimension we have also found that the superfluid velogitys fluctuating
around the critical superfluid velocity,. in (3.3). The previous theories [43, 44, 5, 8]
neglect vortices and predict an instability analogous to spinodal decomposition where long-
wavelength fluctuations of the order parameter grow ahgve The correct singular objects
produced by the instability are phase-slip centres in one dimension and are apparently
vortices in higher dimensions. Notice that vortices are known to appear via the nucleation
mechanism at a much smaller critical superfluid veloejtyof order 000364/ mé [46]. We
should distinguish between the two critical velocitieg, andv,,, because the mechanisms
involved are very different. There has been no experiment neax-gant in which vy, is
exceeded.

Can we expect the same bulk instability and encounter high-density vortices in an
expanding superfluid region in experiments? Do they produce a temperature gradient equal
to d7;,/dx? Note that, if a superfluid state is not very close to thgoint and is exposed
to a much larger heat flux, the usual mutual friction can give rise to a larger temperature
gradient. One such example, where the gravity effect is negligible, namely Ahlers’ result
[55] for T, — T > 1074 K, may be rewritten as

d
(aT> =5x 10727, || 22303 (3.28)
gravity—free

with Q in erg cnt? s~1. In gravity-free conditions in space, this temperature gradient will
be measured even extremely closeTio By requiring that this gradient is smaller than
GT,, we obtainQ/Qo < 8|g/g0/%"°, wheregy = 2.75x 108 and Qp = 6.8 erg cnT? s 1

are the units in our simulations. This condition is satisfied ¢qx, r) in figure 5(c) and
was not in reference [55]. Furthermore, by setting~ %/+/3mé and removingQ, we
obtain the condition on the bottom reduced temperature

lepl = 1= T/ Topo < 107° (3.29)

~

under which the Earth’s gravity serves to appreciably increase the vortex line density.

4. Summary

We have clarified the mechanisms of the shear flow effects in three very different fluids.

(i) In near-critical fluids, the effect arises from flow-induced deformations taking place
on the timescale of~1. The nonlinear hydrodynamic interaction is suppressed, leading to
a downward shift of the critical temperature.

(ii) In semidilute polymer solutions in theta solvent, composition fluctuations induce
heterogeneous stress imbalance, leading to diffusion in the direction of segregation even
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above the coexistence curve. But phase separation takes place only incompletely due to the
flow-induced deformations. Here the heterogeneities can reduce the shear stress and in this
sense the effect is thermomechanical.

(iii) Highly supercooled liquids are characterized by a slow thermal activation time
in quiescent states. If we apply shear flow with, > 1, structural relaxations take place
in the form of shear-induced jump motions on the timescale /&, Thus giving rise to
a new nonlinear response regime. Here even a very small shear can greatly accelerate
microscopicrearrangement processes. This effect is also the origin of the highly ductile
properties of amorphous metals [38—40]. Large-scale molecular dynamics simulations away
from equilibrium should be of utmost importance for understanding such unsolved but
technologically important problems in the future.

We also the apply heat flowp to *He near the superfluid transition, which is extremely
sensitive to heat flow and gravity very close to #hoint.

(i) As is well known, this brings about the coexistence of a superfluid region and a
normal-fluid region separated by a thin interface with thickness proportion@tté’.

(i) When “He is heated from above in a normal-fluid state, the temperature gradient
due to the finite thermal conductivity can balance with the transition temperature gradient
under gravity, leading to a homogeneous steady state with a constant reduced temperature
T — T\ (p).

(i) When a normal-fluid state is cooled from the bottom below the transition, a
superfluid region appears at the bottom and slowly expands in the upward direction. If
the bottom temperaturg, is close to the bottom transition temperat@g,; (Tipor — Tp S
107° K), the superfluid velocity in the expanding superfluid region approaches a maximum,
leading to dense generation of vortices. The temperature gradient due to such vortices
balances with the transition temperature gradient under gravity. Experiments in this direction
should be exciting.
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